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Introduction 
The technique discussed in this tutorial is a weighted Gaussian convolution or the so-called 
coarse-graining method. Its aim is to transform discrete quantities in space to continuum 
variables. We can use this method to establish the correlation between discrete simulations 
like molecular dynamics or discrete elements, and a continuum description (e.g. finite 
element method). Present method should not be confused with coarse-grained molecular 
simulations, where stiff atomic configurations (e.g. pyran rings) are replaced by a single 
larger particle. 

The algorithm presented here is a generalized version of the code used in Ref. [1], [2] and 
[3]. 

The coarse graining function 
The averaging function was choosen as the following form : 

, (1) 

where w is the coarse-graining width and n is the number of dimensions. 

The function of normalized in order to obtain a unit integral in an infinite domain: 
, (2) 

with the distance between grid point and particle: 

, (3) 

and x, y and z are the coordinates of the grid point, while xi, yi and zi are the coordinates of 
particle i. 

Basic concept 
To demonstrate the principal idea of the coarse-graining, consider the following 1D 
example: 
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Figure 1 – 1D concept of coarse-graining. 
 
To obtain the mass belonging to the grid point (highlighted using a black cross) the following 
equation is calculated: 

. (4) 

Each particle is taken into account with its proper mass and a weight associated with the 
particle as a function of its distance to the grid point. 
 
This technique can also be used for stress, energy or other discrete quantities defined on 
particles. 

Coarse-graining displacement 
To calculate the displacements on grid points, the particle displacement is normalized by its 
mass/volume. The weighted average is obtained by the following equation: 

, (5) 

where ui is the displacement vector of atom i. 

Spatial derivatives (e.g. strains) 
The spatial derivatives of the displacements can be calculated analytically. The calculation 
on the x directional deformation is used to demonstrate the technique: 
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The spatial derivatives of the coarse graining function, can be obtained as: 

(7) 

Example 
To execute the coarse-graining script, a MATLAB version 2016 or later is required. 

The input files for a simple 0.5% shear in the xy plane and the coarse-graining script can be 
downloaded Here. 

To start the coarse-graining the following command should be executed: 

[NODES,CG]=CGtoGRID(ini,def,cgwidth,nx,ny,nz,zviz,cutoff) 

Where: 
ini – is the name of the MATLAB file containing the reference configuration.
def – is the name of the MATLAB file containing the deformed configuration.
cgwidth – is the coarse-graining width (w in eq. 1).
nx,ny,nz – are the number of grid segments (grid point number = ni+1).
zviz – slice number to evaluate in the z direction (if zviz = 0 we calculate all nz).
cutoff – coarse-graining cut-off distance (usually 3w).

The files containing the reference and deformed configurations should contain 3 variables: 

Coord – a Nx5 size array, where N is the number of particles: 
Serial number 
of particles 

X coordinate Y coord. Z coord. Weight 

1 2.4 16.7 -22.3 28 
2 -38.8 -18.7 -1.5 28 
… 

Box – a 3x3 size array containing the bons of the simulation box: 
x lower bond x upper bond xy tilt 
y lower bond y upper bond xz tilt 
z lower bond z upper bond yz tilt 
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Data – is a NxM array containing M discrete information on each atom (e.g., stress, 
energy, etc.) 
 
For example to execute the script in this case you can use: 
 
[NODES,CG]=CGtoGRID(‘ini.mat’,’def.mat’,5,100,100,100,50,15) 
 
As a result the algorithm will provide nodal quantities in the NODES structure and coarse-
grained values on a regular grid in the CG structure. In case zviz=0, a 3D array will be 
provided. 
 
To visualize the displacement in the x direction, the following command can be used: 
 
pcolor(CG.cgx,CG.cgy,CG.ux) 
colorbar; colormap jet 

 
 
pcolor(CG.cgx,CG.cgy,CG.exy) 
colorbar; colormap jet 

 
And the average strain corresponds well to the applied macroscopic displacement: 



 
mean(CG.exy(:)) 
 
ans = 
 
    0.0050 
 

CAUTION 
The sum between steps should be done progressively with strain steps smaller than 10%.  
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