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Abstract

Present documentation summarizes the implementation details of an anisotropic energy
degradation model for the phase-field finite element used to simulate brittle fracture.
More about the phase-field method can be found in our recent article [1]. The energy
split used in this implementation is based on the work of Moës et al. [2]. The material
model is used in a 2D plane strain case.

1. Theory

The plus (+) and minus (-) signs in the upper index indicates positive (tension) and
negative (compression) properties. To distinguish between compression and tension degra-
dation the potential energy is divided into two part:

ψ = g (d)ψ+
0 + ψ−

0 . (1)

g(d) is the degradation function: g (d) = (1− d)2. d is the damage variable varying
from 0 to 1, representing undamaged and damaged materials respectively. The positive
and negative energies on the left side can be written as a function of the principal strains:

ψ±
0 =

Eν

2 (1 + ν) (1− 2ν)
〈tr (ε)〉2± +

E

2 (1 + ν)

(
〈ε2〉2± + 〈ε2〉2±

)
, (2)

where E is Young’s modulus, ν is Poisson’s ratio. The first part of equation (2)
represents the volumetric strains with the trace of the strain tensor: tr (ε) = ε1+ε2, while
the second term account for deviatoric degradations. Functions 〈〉± stand for: positive
〈x〉+ = (x+ |x|) /2 and negative 〈x〉− = (x− |x|) /2 part. ε1,2 are the principal strains.
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After substituting eq. (2) into (1) and taking its derivatives respect to the principal
strains we obtain the following equation system:

[
σ1
σ2

]
=

E

1 + ν

[
(1 + α1d)2 + γ(1 + αd)2 γ(1 + αd)2

γ(1 + αd)2 (1 + α2d)2 + γ(1 + αd)2

] [
ε1
ε2

]
. (3)

In eq. (3) γ = ν/(1− 2ν) and the coefficients α, α1 and α2 are taking the positive and
negative parts in eq. (2) into account:

αi = 0 if → εi < 0
αi = 1 if → εi ≥ 0
α = 0 if → ε1 + ε2 < 0
α = 1 else→ ε1 + ε2 ≥ 0

(4)

Eq. (3) can be written is a short form as: σ̂ = Lε̂.
To obtain the stresses from the energy function, its derivative shell be calculated

respect to the strain tensor:

σ =
∂ψ

∂ε
=
∂ψ

∂ε̂

∂ε̂

∂ε
= ε̂TL

∂ε̂

∂ε
. (5)

In this implementation the strain gradient is calculated using a finite difference ap-
proximation. For example, its first term reads as:

∂ε1
∂εx
' ε1 (εx + dεx)− ε1 (εx)

dεx
, (6)

where the principal strain (ε1) is recalculated with the addition of an infinitesimal
increment (dεx), and the difference is divided by dεx. The advantage of this method
compared to the analytic solution presented in Ref. [2], is that this way derivatives can
be determined always, while the analytic solution is discontinuous.

To obtain the materials stiffness matrix, the stress is differentiated respect to the
strains:

C =
∂σ

∂ε
=
∂2ψ

∂ε2
=

(
∂ε̂

∂ε

)T

L
∂ε̂

∂ε
+ ε̂TL

∂2ε̂

∂ε2
. (7)

The second derivatives as well are calculated using finite difference approximations.
The diagonal terms can be expressed as:

∂2ε1
∂ε2x

' ε1 (εx + dεx)− 2ε1 (εx) + ε1 (εx − dεx)

dε2x
. (8)
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Variable Number of SDV in Abaqus

displacement - ux, uy SDV1-SDV2
axial strains - εx, εy SDV3-SDV4
engineering shear strain - γxy SDV5
principal strain - ε1, ε2 SDV6-SDV7
volumetric strain - ε1 + ε2 SDV8
axial stress - σx, σy SDV9-SDV10
shear stress - τxy SDV11
strain energy - ψ SDV12
elastic strain energy - ψ0 SDV13
phase-field - d SDV14

Phase-field element

phase-field - d SDV15
history field - H SDV16

Table 1: Solution dependent variables used to plot the results.

While the of-diagonal components as:

∂2ε1
∂εx∂εy

'

ε1 (εx + dεx, εy + dεy)− ε1 (εx + dεx, εy − dεy)−
− ε1 (εx − dεx, εy + dεy) + ε1 (εx − dεx, εy − dεy)

4dεxdεy
. (9)

Due to the linear relationship between stress and strain eq. (5) is equivalent to:

σ = Cε. (10)

To obtain a stable calculation the materials stiffness is only updated in the first internal
iteration step. Then eq. (10) is used to determine the changing stress values due to strain
redistribution. This step probably introduces some numerical errors, but linearizes the
calculation, which makes it incredibly robust.

A tutorial dedicated to analyze the effect of the asymmetric energy degradation can
be found on the following link: http://www.molnar-research.com/tutorials_
videos_4.html

2. Solution dependent variables (SDV)

Tab. 1 summarizes the concerning mechanical parameters (displacement, strain, stress,
etc.) for each solution dependent variable (SDV).
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