

Multiscale methods for the analysis of plastic deformation of amorphous materials

Gergely Molnár

A. Tanguy, P. Ganster, G. Kermouche, E. Barthel

Gergely Molnár

Content

Initiation: Why Glass?

Multiscale mechanical approach:

- 1. Atomic scale deformation
- 2. Microscopic plasticity
- 3. Material modeling
- 4. Experimental comparison

Conclusion

Outlook

Laura Harris: Balerina glass mosaic 2007

Why glass?

Transparency with a high stiffness

3/43

Macroscopic strength

J.-D. Wörner, Glasbau, 2001.

6/43

Initiation

Bubbles optical photo

Mesoscopic defects

Glass surface AFM image **Ground edge** SEM image

G. Molnár et al., Mechanics of Materials, 2013

Gergely Molnár

Initiation

Macroscopic strength

Gergely Molnár

Brittle fracture

When and how does it break?

Intuitive testing methods

Bullet proof glass test 1952 (origin unknown)

Gergely Molnár

Annealed glass plateResolution:1280×1024 pixelsSpeed:100 fps

Initiation

Plasticity in silicate glasses

- 1949 : E.W. Taylor, <u>Plastic deformation of optical glasses</u>, *Nature*.
- 1963 : D.M. Marsh, Plastic flow in glass, Proc. R. Soc. Lond. A

Structural steel

FIGURE 2. Comparison of Vickers hardness impressions in glasses and in metals. (Left) in soda glass. (Right) in a bearing steel.

Window

glass

Gergely Molnár

Multiscale approach

13/43

Gergely Molnár

PMMH, ESPCI, Paris

2.5

18

Atomic scale modeling Atomic scale deformation (molecular statics) Initial Equilibrium Deformed shear band Homogenous def. **Energy minimization Stress** $\boldsymbol{\sigma} = -\frac{1}{V} \sum_{i} \left| -m_{i} \mathbf{v}_{i} + \frac{1}{2} \sum_{i \neq i} \boldsymbol{r}_{ij} \otimes \boldsymbol{f}_{ij} \right|$

14/43

Gergely Molnár

Material model development

Basics (FEM)

- 1. Yield stress (F)
- 2. Elastic stress prediction (*K*)
- 3. Plastic return (*dp^{pl}*)
- 4. Plastic strains (*dɛ^{pl}*)
- 5. New yield stress

Material model development

Computational plasticity (FEM)

G. Molnár et al., Acta Materialia, 2016.

Material model development

MD/MS: Stress state \rightarrow plastic strain

Duality between MD/FEM

FEM: Plastic strain → Yield stress

17/43

G. Molnár et al., PRE, 2017.

Shear stress results

Composition

Pressure state

G. Molnár et al., PRE, 2017.

Shear stress results

Gross & Tomozawa (2008) JAP

Brittle vs plastic?

Sodium silicate ductile

fragile crack

20/43

G. Molnár et al., Acta Materialia, 2016.

Material model development

MD/MS: Stress state \rightarrow plastic strain

Duality between MD/FEM

FEM: Plastic strain \rightarrow Yield stress

21/43

G. Molnár et al., Acta Materialia, 2016.

Atomistic response

Densification (permanent volume change)

$$\varepsilon_V^{pl} = \varepsilon_z^{pl} + \varepsilon_y^{pl} + \varepsilon_z^{pl}$$

Hencky-logarithmic strain

Unprocessed results

22/43

PMMH, ESPCI, Paris

Hydrostatic plastic strain increases in a sigmoidal way

Gergely Molnár

23/43

Densification upon shear at constant pressure

G. Molnár et al., Acta Materialia, 2016.

Atomistic response

MD: Stress state \rightarrow plastic strain

FEM: Plastic strain \rightarrow Yield stress

Pre-densification

25/43

G. Molnár et al., Acta Materialia, 2016.

Atomistic response

What is glass?

Amorphous silica

Zachariasen's original concept (1932)

Atomic-resolution electron spectroscopy

Open atomic structure

P. Y. Huang et al., NL, 2012.

28/43

Gergely Molnár

Amorphous silica

Shear transformation zone Plastic event

Open atomic structure

Atomic-resolution electron spectroscopy

P. Y. Huang et al., NL, 2012.

29/43

Gergely Molnár

Amorphous silica

Shear transformation zone Plastic event

Atomic-resolution electron spectroscopy

P. Y. Huang et al., Science, 2013.

30/43

G. Molnár et al., JNCS, 2016. G. Molnár et al., PRE, 2017.

Atomistic response

Plastic strain

$$\underline{\underline{\varepsilon}}^{pl} = \sum_{i=1}^{N} \frac{V^{i}}{V} \underline{\underline{\varepsilon}}^{PE,i}$$

Compression induces initial defects in the atomic structure which results in a quicker yielding

31/43

G. Molnár et al., JNCS, 2016. G. Molnár et al., PRE, 2017.

Atomistic response

G. Molnár et al., JNCS, 2016. G. Molnár et al., PRE, 2017.

Atomistic response

Local strength vs local composition

S. Patinet et al., PRL, 2016.

G. Molnár et al., MRS Advances, 2016

G. Molnár et al., MRS Advances, 2016

MINE!

Saint-Étienne

1.

2.

3.

G. Molnár et al., Mech of Mat., 2017

Verification

Room temperature Real life loading rate Micrometer size

Indentation

Pillar

G. Kermouche et al., AM, 2016.

40/43

Gergely Molnár

- 1. Constitutive model from atomic scale simulations
- 2. Elementary mechanism responsible for glass plasticity
- 3. Good experimental correspondence

Modeling brittle fracture

(in collab. with Anthony Gravouil, INSA)

Diffused damage → Phase-field method

Open source implementation of ABAQUS/UEL

MORE: www.molnar-research.com (Examples, tutorial, theory)

42/43

Gergely Molnár gmolnar.work@gmail.com www.molnar-research.com