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The structural and elastic mechanical properties of xNa2O–(100-x)SiO2 sodium silicate glasses were computed
and analyzed at different scales, using atomistic simulations and coarse-grain methods based on physical princi-
ples. The numerical simulations were performed on large samples (~1003 Å3 box size with ~70 000 atoms), and
the results were compared to experimental measurements. It was shown that the cutoff in the non-Coulombic
part of the empirical interactions affects the pressure/density relations. Therefore, this valuewas tuned to achieve
the experimental density at ambient pressure. As a result we obtained realistic mechanical and structural
properties aswell.With thismodel, we analyzed the elastic response of the samples for different sodium content.
We showed, that experimentally measured elastic moduli result from a succession of micro-plastic rearrange-
ments that must be taken into account when calculating microscopic elastic moduli. Moreover, we investigated
the size dependence of the elastic moduli, and we showed a strong connection between small scale heteroge-
neous elasticity and sodium repartition. The transition from small scale to large scale description of elasticity
should involve an accurate description of the spatial organization of sodium ions inside the silica network.
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1. Introduction

Understanding the relationship between mechanical and structural
properties in silicate glasses is a challenging task. Indeed, silicate glasses
are widely used in cements [1], in passive fire protection, and in the
automotive sector [2]. Sodium silicate glasses are of huge interest to
academia and industry as they are used as setting and hardening
accelerators for cements [3]. However, diverse glass compositions
break in different ways and for all these applications, it is important to
deal with the composition dependence of the mechanical behavior.
For example, soda-lime-silica, which is one of the most popular
architectural materials nowadays [4], has amuchmore ductile behavior
than pure silica, even if silica has a highermacroscopic strength [5]. Fail-
ure properties are very sensitive to local ductility [6]. Plastic behavior in
amorphous systemswas directly related to the local elastic heterogene-
ities [7]. But the connection between local structure and elastic proper-
ties is still a matter of debate in disordered materials. It is not clear for
example whether specific species at different densities will give rise to
stiffening or softening at a macroscopic level, and if it is possible to
relate a structural defect (like a coordination defect) to local softening.
Indeed, the microscopic basis of the apparent linear elastic behavior at
a macroscopic scale in glasses is even not clearly established, due to
).
the spatial heterogeneities, and to the large distribution of energy
barriers in these metastable materials [8].

In this study, we concentrate on the structural and elastic properties
of sodium silicate glasses that are an intermediate composition between
soda-lime-silica and silica as they contain only one network modifier.
One requirement is to identify the role of additional species on the
structural and elastic properties of the glass, and to estimate the
smallest scale where the material can be described accurately enough
by a spatially constant constitutive model. This scale corresponds to
the size of the representative volume element [9–11] (RVE), which is
crucial to develop continuum models later. For this endeavor, we per-
formed atomic simulations using classical molecular dynamics scheme
(MD) which is employed by many authors to analyze the structural
[12–23] andmechanical [24–30] properties of silica and sodium silicate.
Several studies [13,16,17] compared successfully the static and dynamic
structural properties of modeled sodium silicate with experimental
results. Nevertheless, the mechanical behavior remains much less
studied and mainly for very small system sizes [31,32]. However, the
identification of the RVE [33–35] is essential to transfer the atomistic re-
sults to larger scales. Therefore, it is important to check that the results
are independent of the size of the simulation box. The identification of
the RVE can then be made only if a scale exists, above which the me-
chanical parameters do not vary anymore. In this paper, we will focus
on the elastic response, and we will give atomistic foundation of the
elastic moduli computed at different scales. Among other questions,
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the connection between effective elastic moduli measured at large scale
and local mechanical reversibility will be discussed, as well as the
convergence from an elastic heterogeneous behavior to a homogeneous
behavior at large scale. Indeed, it is now well established that disorder
induces meso-scale rotational correlations [33,36] with a size compara-
ble to the scale above, which the system becomes isotropic and homo-
geneous [7]. The role of the microstructure on this effect is still a
matter of debate [37] aswell as the role of the precision in themeasure-
ment of the elastic moduli [8,30], in connection with possible irrevers-
ible small-scale processes. In this paper the results of atomistic
simulations are analyzed using coarse-graining technique to describe
the mechanical response at different scales and with different degrees
of precision. Sufficiently large samples (≈1003 Å3) were used to reduce
the effect of periodic boundaries [38] and finite size effects are
discussed. After delineating the method and validating the structures
of our models via experimental data of neutron scattering [39–42] and
local connectivity (mainly NMR) analysis [43–46] we concentrate on
the apparent elastic mechanical behavior at different scales, and on its
chemical sensitivity. The results give not only insights into the micro-
scopic origin of the elastic heterogeneities, but could also be used in
continuum based models and simulations [47–49].

The paper is organized as follows: in Section 2, we introduce the
basic numerical techniques used. The importance of the potential
function is outlined. How andwhy this numerical parameter can change
significantly themechanical results of the simulations is brought up. The
verification of themodelswas donewith the detailed structural analysis
compared to experimental results. In Section 3 the macroscopic results
of a quasi-static deformation is shown. The mechanical parameters are
derived using both global and local methods. Plus, local mechanical
properties, i.e. stiffer and softer regions are related to structural ones,
highlighting the effect of sodium distribution in disordered silica
network and heterogeneous elasticity. Finally a general discussion and
the conclusion are presented.

2. General description of the system

In this part, we describe the simulations with a special care devoted
to the pressure/density relationship. Comparison of the structural prop-
erties to experimental data is presented.

2.1. Atomic system generation

The amorphous glass sampleswere generated by random sequential
placement of the atoms in a periodic simulation box after whichmolec-
ular dynamics simulations using LAMMPS software [50] were used to
equilibrate, quench and test the samples. Classical molecular dynamics
(MD) simulation is a numerical scheme to solve the classical Newton's
equation of motion for a system of N atoms interacting via empirical
potentials, detailed later, and with different external inputs (like a
constant temperature and pressure — NPT ensemble). The
xNa2O–(100-x)SiO2 glass models with x = 5, 10, 15, 20, 30 and
40%mol were generated following the method explained below,
with ~70 000 atoms in a box of final length of ~100 Å, as detailed in
Table 1. Other system sizes (L=10 Å, L=20 Å, L=30 Å, L=50 Å and
L=150 Å with respectively 75, 600, 2000, 9000 and 250 000 atoms)
were also studied at the samepressure, in order to test finite size effects.
Table 1
Detailed system information: nominal composition (x nom), precise composition (x prec),
number of atoms (N), final simulation box size (L 0) and density (ρ0) at zero pressure.

x nom [%mol] 5 10 15 20 30 40

x prec [%mol] 4.998 9.998 14.99 19.99 30.00 40.00
N [−] 67 041 68 472 69 849 70 926 73 368 74 604
L 0 [Å] 99.71 99.76 99.92 99.84 99.86 99.89
ρ0 [g/cm 3] 2.25 2.30 2.34 2.38 2.47 2.52
The atomswere placed randomly, taking care that theminimumdis-
tance is larger than 1.5 Å. Using NPT ensemble simulations with
Berendsen barostat [51] and Nosé–Hoover thermostat [52], the systems
were first equilibrated at the liquid state of 3000 K and zero pressure
(±5 MPa) for 1.4 ps with a coupling time of one timestep (1 fs) to the
thermostat. This way the initial explosion of the kinetic energy was
controlled without particle collisions. After this short period the
coupling time to the thermostat was set to 2 ps. The systems were
thenmelted for 100 ps at 3000 K.We did not increase further the initial
melting temperature because at higher temperature ranges the
repulsive part of the potential function becomes active which dilutes
the results [12]. Then the liquids were quenched with the cooling
rate of 10 K/ps (10 +13 K/s) down to a final total kinetic energy
(Ekin~10-4 eV) which corresponded to 10-5 K temperature. Finally the
systemswere equilibrated for 100 ps and the total energy of the systems
was minimized using Polak–Ribiere conjugate gradient algorithm to
reach static equilibrium. This quenching rate may seems fast, although
it was shown in Ref. [12,53,54] and also double checked by this study
that neither structural nor density properties change furthermore by
decreasing this parameter [55].

2.2. Potential function

From several types of empirical potential functions developed to
describe sodium silicate glasses [56,57,31,58], we chose to adapt the
so-called van Beest, Kramer and van Santen (BKS) potential [57]
which was extensively studied. We used the parameters set according
to thework of Yuan and Cormack [16]. The two-body potential function
used in this paper can be described as follows:

ΦBKS
αβ rð Þ ¼

ΦCoul
αβ rð Þ þΦBuck

αβ rð ÞG r; rcut;γð Þ for r≥rrep;
ΦCoul

αβ rð Þ þΦRep
αβ rð Þ for rbrrep;

8><
>:

ð1Þ

where

ΦBuck
αβ rð Þ ¼ Aαβe�r=ραβ � Cαβ=r6; ð2Þ

G r; rcut;γð Þ ¼ e�γ2= rcut�rð Þ2 ; ð3Þ

ΦRep
αβ rð Þ ¼ Dαβ=r12 þ rEαβ þ Fαβ: ð4Þ

In Eq. (1), α and β correspond to the different species (Si, O or Na)
and r is the distance between two atoms. Φαβ

Buck is the well
known Buckingham term, which was set according to the parameters
(Aαβ, ραβ, Cαβ) of Yuan and Cormack [16].

In addition to this description, the G(r,rcut,γ=0.5) cutoff function
was added to the Buckingham potential to ensure that the potential en-
ergy and its first derivative (contact force) goes smoothly to zero at the
distance equal to the cutoff (rcut). A stronger very short range (if rbrrep)
repulsive potential (see in Eq. (4)) was added to the traditional BKS
potential in order to avoid the collapse of atoms at high pressure or
temperature as usually seen [59–61,30]. Dαβ, Eαβ, and Fαβ have been
set, that the potential function and its first and second derivative stays
continues. rrep was taken as close as possible to r0 (distance,
where the potential function has its maximum) in order to have a
repulsive effect at small r values. The classic Coulomb interactions

in Eq. (2) (ΦCoul
αβ ¼ k qαqβ

r , where k is Coulomb's constant) are calculated
using partial charges (q0= -1.2, qSi=+2.4 and qNa=+0.6) [16]. To
take periodic boundaries into account a long term PPPM solver was
applied with the maximum of 10−4 relative root mean square error in
forces. This standard potential was already used to study the structural
and some mechanical properties of sodium-silicate samples. Our work
studies extensively the related mechanical response at different scales,



14 G. Molnár et al. / Journal of Non-Crystalline Solids 440 (2016) 12–25
and the role of the cutoff parameter rcut. We have compared some of the
results as well to those given with the potential of Pedone et al. [31]
which involves a different expression for the Buckingham function.

It needs to be emphasized that our work is not meant to propose a
new potential function. It is about to show how the cutoff value can
fine-tune the BKS potential to achieve the experimental density values
with adequate stiffness constants. Without this modification neither
would be sufficient to reproduce macroscopic mechanical properties.

It is well known that the cutoff value rcut has an effect on the calcu-
lated pressure [12,62–64], however there are different ways to intro-
duce a cutoff in the empirical interactions. In this paper, the cutoff is
acting only on the non-Coulombic part of the interactions. The Coulom-
bic part of the interactions is kept in their original form in order to pre-
serve charge neutrality. The cutoff applies only on the shorter range
interactions. Generally, a cutoff is used to reduce the computational de-
mand. The truncation of the interatomic potential at a cutoff introduces
some difficulties in defining a consistent potential and force for use in
molecular dynamics. By applying this method, a relatively small jump
appears in both the potential, and the force function at the cutoff.
When calculating global energies and pressure, this artifact causes
huge fluctuations due to this discontinuity. This can be avoided by
applying some kind of correction function [65]. The simplest case is, if
a constant value is subtracted from the potential. However, this does
not solve the problem of the forces. The second step would be to sub-
tract a linear function from the potential, thus a constant value from
the force. In practice [16] more advanced, differentiable functions [66]
are used, as well as in our case (Eq. (3)).

Using a unified value for the cutoff parameter, the BKSpotential does
not reproduce experimental densities and stiffness properties
adequately. Therefore, an additional correction has to be applied. This
could be a simple normalization of the density (for NPT) or an initial
pressure correction (for NVT). Both methods artificially change the
computed macroscopic mechanical properties, and do not decrease
the difference between the stiffness constantsmeasured and calculated.
In this study the cutoff valuewas chosen tofine-tune the simulated den-
sity values, consequently achieving good pressure–density relationships
and adequate stiffness properties aswell. Unfortunately, we did not find
a unified value for the cutoff parameter as function composition, there-
fore we propose to change rcut with the added sodium-oxide.

The difference of the force and stiffness obtained with and
without the cutoff value is shown in Fig. 1 for different cutoff values
(rcut=5,9,13 Å) and Si–O pairs. The interactions depend of course on
the cutoff valuewhich affects the forces and consequently the calculated
pressure and mechanical properties. There is a tendency that the use of
a small cutoff implies an increase of the effective repulsive force at small
distances (see Fig. 1) and thus, of the macroscopic pressure, due to the
decay of the attractive van der Waals contribution.
Fig. 1. The difference between contact forces with and without cutoff for the Buckingham
potential of Si-O pairs (inset: same for stiffness). Cutoff values are rcut=5,9 and 13 Å.
One would naively think that the larger the cutoff the better it is,
however it seems that to match the glass densities measured in actual
experiments, a moderate value for the cutoff is needed. In addition,
this choice also ensured that the final pressure remains low (±5 MPa).

Note that, this small composition dependence of the cutoff value
raises interesting questions about the possible role of composition on
the screening of short-range interactions. These interactions being
considered as homogeneous beyond the cutoff distance. This could be
related to mutual orientations of instantaneous dipolar interactions
not described in the initial version of the BKS potential [67], and already
evidenced for Coulombic interactions [68]. But this question is not the
purpose of our paper: our main worry being to achieve good structural
properties and pressure–density relations as well, thanks to an empiri-
cal adjustment of this simple parameter.

2.3. Density

In Fig. 2(a) both simulated (black triangles and crosses) and experi-
mentally measured [69,70] density values are plotted for different sodi-
um silicate compositions. Similarly, we found that the density increases
as a non-linear functionwith the cutoff as shown in the inset of Fig. 2(b).
As aforementioned, the interaction cutoff was chosen such that the
observed density at ±5 MPa pressure matches the results of the most
recent experiment [70]. It shows a linear increase with the sodium
content (see Fig. 2(b)). The linear fit then allows for creating simula-
tions of new compositions without the need of further calibration.

It has to be noted that applying the cutoff at a constant distance
(rcut=5.5 Å) would not allow us to reproduce experimental density
values. At x = 10%mol, the density is reproduced in an adequate way,
but above this composition the simulations underestimates the
materials density.

It was shown in the inset of Fig. 1 that the individual stiffness of the
bonds rises by increasing the cutoff distance. The global stiffness of the
full system is affected consequently. This effect is demonstrated in
Fig. 3(a) where the Young's and bulk modulus are computed for 5%
Na 2O–95% SiO 2 as explained later. An increase of 20% was found of
the Young's modulus for a cutoff change of factor 2, underlining again
the importance of the proper choice of the cutoff values. The effect of
this parameter is far larger than the quenching rates varying over few
magnitudes (see Fig. 3(b)).

2.4. Structural analysis

Visualization of structural inhomogeneities can be done by looking
at the local density of sodium (Fig. 4). In order to test the often proposed
hypothesis, that sodium is arranged along channel-like formations [17,
Fig. 2. a.) Simulated density (fine-tuned cutoff — black triangles; constant 5.5 Å cutoff—
crosses) compared with experimental value (Manghnani's work [69], Zhao's work [70]).
b.) Chosen cutoff for different compositions with linear fit (inset: density as a function of
cutoff with 3rd order polynomial fit and the chosen cutoff indicated by the star).



Fig. 3. Global Young's and bulk modulus as a function of the interaction cutoff (a.) and
quenching rate (b.) for x = 5% mol Na 2O. Stars indicate the cutoff value and the
quenching rate used in the detailed simulations.
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20,71–76], we drew different iso-density surfaces for different density
values in Fig. 4. The following continuous coarse-grained expression
was used for the density given by

ρ rð Þ ¼
X
i

miϕ r−rik kð Þ; and ϕ rð Þ ¼ 1
π3=2w3 e

− r=wð Þ2 ; ð5Þ

where ri is the position of atom i with mass mi, r is the position of the
observed grid point and w is the coarse-graining scale. It can be seen
in Fig. 4 (with w=8 Å), that high density regions are positioned on
small isolated pockets, but for smaller atom densities one can see that
these pockets grow into connected channel-like shapes. This confirms
the hypothesis that sodium has a medium range order and that it is
positioned among the silica structures. The sodium atoms do not pene-
trate isotropically the original silicon-oxygen network. This can be an
additional reason for the deviation from the mean-field description.

This channel like feature is tested with a percolation analysis [77].
The regions with sodium density above ρl form isolated islands. These
pockets transform into a percolating cluster at a critical density (ρl ,c),
which was found to be ρl ,c=10.60 atom/nm 3. At this point the chosen
region fills only 8.3 % of the simulation box. This value is the third of
what is required for the percolating cluster on a random3D cubic lattice.
This suggests that high density sodium regions have local correlations.
Fig. 4. Sodium density isosurfaces of sodium rich regions (mean value is: 14.65 a
Such a low percolation density can be obtained also by the random
placement of prolate ellipsoids with the aspect ratio of 8 [78]. The
percolation cluster created with prolate ellipsoids has a channel like
structure similarly to the high density sodium regions in Fig. 4(a). We
have tested this assumption by an ellipsoid insertion algorithm [79],
where the largest possible ellipsoids was fitted into the given object.
The analysis also showed the high occurrence of prolate ellipsoids
with the aspect ratio of 7–9, confirming the percolation results. We
can conclude from this analysis that the high density sodium regions
form channel like structures with aspect ratio of 8.

In Fig. 5 experimental [41] neutron and X-ray (inset) structure
factors are compared with the simulated ones using ISAACS [80] for
30% Na 2O–70% SiO 2 sodium silicate glass. Numerical comparison can

be made using a χ2 test: �χ2 ¼ ∑np
i¼1 ðSðqiÞMD � SðqiÞExperimentalÞ2=np ,

where S(qi) is the value of the function at qi and np is the number of qi
points. The difference between the two functions are �χ2

Neutron ¼ 2:6 � 1
0�3 and �χ2

X�ray ¼ 2:4 � 10�3, which can be considered relatively low.
Furthermore the peaks of the functions are in corresponding places.

A better interpretation of the scattering results can bemadewith the
total correlation functions (TCF) calculated from the Fourier transform
of the structure factors. The calculated TCF shown in Fig. 6 displays a
very good match with the experimental data of Fábián et al. [41].
Good correspondence was also observed while comparing partial pair
distribution functions as it is shown in Fig. 7. We found a discrepancy
between Na–Na pairs. However, the peak position of this function in
the literature is highly dependent on the small distance hard sphere
cutoff (2.5 Å for Ref. [41]) used in reverse Monte-Carlo simulation per-
formed to transform experimental data [39–41]. For example in Ref.
[39] the authors set this parameter to 3.1 Å and the peak was found at
3.2 Å. Thus, it is not a reliably comparable parameter. This fact was
checked by the authors of present paper as well.

To compare two structures, another standard measurement is the
connectivity of the silica system (Q n distribution). Therefore, we fo-
cused on the number of bridging (BO) and non-bridging oxygen
(NBO) atoms around a silicon to describe the connectivity of the silica
system. This number was calculated by counting BO atoms, whose
position to the central silicon atom was closer than 1.7 Å. This distance
is the first local minimum (1.7 Å) after the first peak (1.6 Å) of the
corresponding Si–O pair distribution function. We considered bridging
oxygens if they had two silicon atoms at a distance closer than 1.7 Å.
All other oxygens were considered NBOs. The Q n species (n = 4, 3, 2,
1, 0) are defined as Si atoms having n BO atoms. Table 2 shows
comparison between the Q n distribution obtained by our simulation
and NMR measurements [43–45]. 20% Na 2O content was chosen
because this is the composition for which the most experimental
measurements exists in literature. Our results lie within the scatter of
the experimental results.

In Table 3 thedistributions of differentQ n species are shown as func-
tion of composition. The increment of the sodium content decreases the
amount of Q 4 tetrahedral silicons, and increases the amount of less
tom/nm 3) for x = 30% mol Na 2O, with the coarse-graining scale of w=8 Å.



Fig. 5. Comparison between neutron and X-ray structure factor obtained by experiments
[41] (circles) and MD simulation (black line) for x = 30%mol Na 2O.

Fig. 7. Partial pair distribution functions obtained by different methods for x = 30%mol
Na 2O: MD (black line), Experimental + RMC [41] (circles).
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perfect formations (Q 0, Q 1, Q 2, Q 3). Also in Table 3 we can see the
change of the bridging (BO) and non-bridging oxygens (NBO) ratio. As
expected, by the adding Na the number of non bridging oxygens
increases, with the decay of the amount of Q 4 silicons. From these
observations it is obvious, that sodium acts as network modifier which
alters the atomic structure. It is usually present as ion, compensated
by non-bridging oxygen atoms. NBOs are bonded by one covalent
bond to the original silica network and holding a negative charge to
compensate for the positive sodium ion nearby. The presence of non-
bridging oxygens lowers the relative number of strong bonds in thema-
terial and this way weakens the network.

We have shown in this part, that the comparison between the simu-
lation and experimental data is adequate, and is within the accuracy of
the most recent experimental measurements. In summary the network
of the simulated material is in agreement with the experimentally
measured sodium silicate structure, with channel-like organization of
sodium along percolating clusters that have been adequately character-
ized. We will now look at the related mechanical properties.

3. Mechanical results

The following section focuses on the analysis of themacroscopic and
microscopic elastic properties for different compositions. For that
purpose, a detailed coarse-grain analysis was performed by looking
first at the effect of cumulative applied strain, and then at the spatial
distribution of the elastic moduli.
Fig. 6. Top: Total correlation functions calculated from neutron scattering [41] and MD
simulation. Bottom: Difference between MD simulations and experimental
measurements from for x = 30%mol Na 2O.
3.1. System deformation

After minimizing both kinetic and potential energy every sample
was tested to evaluate its elastic mechanical properties. We focused
on the quasi-static athermal limit, where thermal effects and related
viscous processes are assumed to be negligible in comparisonwith elas-
tic and plastic properties. This assumption is reasonable for glasses
below the glass transition temperature [37]. When the mechanical
load is slow, the static method is more preferred than the dynamic
method. The static method [81] corresponds to a number of successive
deformation steps followed by a minimization in order to map local
minima on the potential energy hypersurface. The dynamic method
[51,82] involves the solution of the equation of motion as a constant
stress molecular dynamics simulation. This way, the shape of the simu-
lation box is changed in order to achieve a desired stress state. The dy-
namics method was used during the creation of the system that is a
short time high-temperature process. For quasi-static (low frequency)
mechanical load, it is more convenient to use the static method. The
static method is also more suitable than any statistical physics inspired
method [83], due to the lack of thermodynamical equilibrium in the
glassy state. Upon mechanical load, the system evolves from one
metastable state to another. The only assumption made in the athermal
limit is that below the glass transition temperature, thermal activity is
negligible in comparison with mechanically driven one. This method
allows finally a clear identification of reversible and irreversible steps,
as will be discussed later.

The deformation is imposed on the periodic simulation box in a
homogeneous way and the system is then relaxed in order to reach an
Table 2
Q n species in sodium silicate containing x = 20%mol Na 2O with the theoretical bond
length rSi-O =1.7 Å. Experimental data were taken from Emerson [43], Maekawa [44]
and Charpentier [45] (with two different methods).

Q n This work Emerson Maekawa Charpentier

Q 0 0.04% 0% 0% 0% 0%
Q 1 0.82% 0% 0% 0% 0%
Q 2 8.42% 6% 2% 8.33% 4.17%
Q 3 38.81% 40% 48% 33.33% 41.76%
Q 4 51.91% 54% 50% 58.34% 54.17%



Table 3
Q n species and BO–NBO ratio for different simulated composition.

NaO
[%mol]

Q 0 Q 1 Q 2 Q 3 Q 4 BO NBO

[%]

% 0.02 0.25 1.02 13.72 84.97 93.39 6.62
% 0.02 0.37 2.40 24.24 72.95 87.57 12.43
% 0.03 0.48 5.03 32.11 62.33 81.84 18.16
% 0.04 0.82 8.42 38.80 51.90 75.94 24.06
% 0.23 3.34 18.74 45.19 32.47 63.07 36.94
% 0.84 9.52 30.53 41.90 17.19 49.71 50.30
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equilibrium position. Two kinds of deformations were used: one-
dimensional compression and simple shear at constant volume (see
Fig. 8). During compression, one of the dimensions of the simulation
box was reduced by a constant displacement step (whose value will
be discussed later) while the positions of the atoms were rescaled in a
homogeneous way. The other two perpendicular box sizes were not
changed, therefore perpendicular stresses appeared and the compres-
sion test corresponded to a triaxial test. After the box displacement, a
new equilibrium position was searched using the same Polak–Ribiere
conjugate gradient algorithm as for the preparation. The shear
deformation was done similarly by tilting the simulation box. The
above deformations were repeated until the total cumulated strain
reached 1%. This kind of applied deformation corresponds to a quasi-
static low-frequency) loading where the time elapsed between succes-
sive steps is supposed to be larger than the time needed to dissipate the
energy [84]. We note, that ϵ is the normal strain applied during com-
pression, and γ is the engineering shear strain applied upon simple
shear tests.

The elementary strain steps were chosen to allow the system to
respond elastically. In order to find the largest strain step allowed, the
Fig. 8. Top: Two basic types of loading: triaxial compression (left), simple shear (right). Botto
compression (left) and simple shear (right).
following test was used: the box was deformed, relaxed and re-
deformed to its original shape, then the displacement of the atoms
were calculated between the original and the new configuration. The re-
maining displacements were divided by the box length to achieve
strain-like unit. The histogram of the remaining displacements were
then fitted by a log-normal distribution function. In Fig. 9 the position
of the histogram peak is plotted as a function of the strain step size
(δγ) for shear deformation. Until δγ=10-4 the average deformation
stays elastic, but for larger steps the remaining displacements increase
drastically and enter the plastic regime. Therefore the largest elementa-
ry strain step used was set to 10 -4 which is consistent with previous
measurements [30,35].

The stiffness tensor was then calculated both globally (at the scale of
the system size), and locally (at a smaller coarse-graining scale). In
order to identify the scale where the material looses eventually its
local anisotropic components and becomes isotropic, the complete
stiffness tensor was considered [7]. Another aim was to compare the
numerically obtained constitutive laws to the experimental one, and
to ascribe a microscopic interpretation to the measured elastic moduli,
for different cumulative strain increments.

3.2. Global elastic properties

In order to measure the 21 elastic moduli [85] characterizing the
macroscopic mechanical response, all systems were submitted to 6
different deformations: three one directional compressions along
three different perpendicular axes and three simple shears along three
perpendicular planes. The schematic description of the two major
loading cases is shown in Fig. 8. The stress–strain relations show small
fluctuations that are due to local irreversible events, also referred to as
micro-plastic events [86–88,84,89,30]. In all cases the macroscopic
deformation was calculated from the dimensions of the simulation
m: Early stages of the stress–strain relationships measured in the corresponding triaxial



Fig. 9. Position of the peaks of the histograms of the displacement of the particles after a
forth and back deformation step as a function of strain step size.
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box. Stresswas thenmeasured by the summation of the per-atom stress
values divided by the box volume. Voigt notation and engineering shear
strains were used (Fig. 8) respectively. Hooke's law is then written as:

σ ¼ Cϵ; ð6Þ

where C is the stiffnessmatrix,σ and ϵ are vector representations of the
stress and strain tensor (Voigt notation). The applied strain (ϵ) is always
calculated from the displacements between original p0 and a deformed
pn state (e.g. see Fig. 8). ϵ is the total strain separating two states, what-
ever the number of steps in-between. It will be referred to as the global
strain or applied strain in the following. For example at 1% global strain
(in other words with 1% strain resolution) we compute the material
constants using the stress and strain increments between the initial
configuration and one of the six different deformed configurations,
which were compressed or sheared by a total cumulated amount of
1% (with the basic increment of 10−4 strain steps). Note that this defor-
mation includes possible microplastic events and is not reversible at all
scales. The stress is also calculated as the difference between the final
and the initial value. The components of the stiffness matrix (C) are
calculated as a linear regression (n th slope) between the first and the
deformed configuration. Six different quasi-static deformation cases
result in 36 equations. The stiffness matrix is symmetric. Therefore, a
general, anisotropic material can be described by 21 unknowns. The
six individual Eq. (6) were rewritten as an overdetermined equation
system (‖Mc−s‖=min) relating the tangent moduli to the stresses.
The coefficient matrix (M, size: 36 × 21) contains the strain values.
The stiffness components are the unknowns (c, size: 21 × 1), and the
stress values are the constant terms (s, size: 36 × 1). To solve the over-
determined system QR decomposition was used. Knowing that the
equations are not fully independent, there is always 15 equations
which are linear combination of the others. The relative error (Δ) is de-
termined by substituting the stiffness components into the original
equation system and then calculating the stress difference from the
MD results.

In Fig. 10 the components of the stiffness tensor and Δ is plotted as a
function of the applied global strain. The initial high value of the error
indicates that the material deviates from linear elastic behavior
especially for small strain steps, most probably due to the small plastic
events. However, it is shown here that for the global measurements
(unlike for the local measurements, as will be seen later), Δ is always
smaller than 10%, which means that the error is small. In Fig. 11,
the error (Δ) is plotted for different system sizes, at a global strain
γ=0.5% where the error was stabilized for all the sizes considered. It
is shown here, that the size dependence of the relative error saturates
when the system size becomes larger than L=50 Å (~9 000 atoms).
This size can thus be considered as the minimum size needed to get
reproducible macroscopic measurements of the elastic moduli. In the
following, L=100 Å will be used.

In Fig. 10 one can see first that the green dashed group (from C14 to
C56), which represents the anisotropic components of thematrix is neg-
ligible compared to the other ones C14≈0.3 GPa). One can also see that
the simulation box is large enough to recover the continuum isotropic
and homogeneous description valid at large scales. Our system is indeed
isotropic (with only two elastic constants) in the domainwhere the rel-
ative error is sufficiently small. Finally, 9 orthotropic material constants
were calculated as a function of the applied strain: Ex, Ey, Ez, Gxy, Gxz, Gyz,
νzx, νyx and νzy [91]. They are shown in Fig. 12. For small applied strain,
due to the large initial errors, some orthotropic stiffness components Gi

are negative, which case violates Drucker's stability criterion [92]. These
negative values correspond to local instabilities, or plastic events, occur-
ring even at very small deformations which cannot simply be tracked
experimentally, but changes the numerically computed precise value.
In the same range of small strain increments (γb0.1%), a large value
of Δ indicates that linear elasticity is not valid at that scale. The maxi-
mum value for Δ is 10% and is reached at very low global strain
(Fig. 10). For such a very small strain value, there is a strong variation
of the elastic moduli. The same results hold for the potential of Pedone
et al. [31]. Note that a better convergence criterion was found in
Lennard-Jones like systems for the same system size [7]. At larger
applied strain, the 9 orthotropic constants merge into 3 well defined
elastic constants: a Young modulus E, a shear modulus G, and a related
Poisson's ratio ν. The relative maximal difference between the
orthotropic material constants is defined as:

ΔCi ¼
Cmax
i −Cmin

i

� �
Cih i ; ð7Þ

where Ci corresponds to Ei, Gi, νi. The maximum and the minimum are
taken from three different components of the selected group. ΔCi is
used to characterize the orthotrophy in the global elastic properties.
As shown in Fig. 12(d), it decreases rapidly. Only a small fluctuation
remains at large strains. It is thus possible to define the three elastic
constants E, G and ν as the average between the three corresponding
orthotropic values of each group, for each global strain. The difference
between the measured average of the Poisson's ratio (ν) and the
isotropically calculated one:

νISO ¼ E= 2Gð Þ−1; ð8Þ

quantifies the departure from the isotropic behavior. As shown in
Fig. 13, the ratio between ν and νISO goes to one, exponentially, with a
characteristic applied strain (γc). This means that the isotropic behavior
is indeed recovered after a global strain γc=0.16%. The bulk modulus K
can be deduced from twoorthotropic constants. It is shown in Fig. 12(e),
that the best definition for K is obtained using the shear modulus and
the Poisson's ratio, and is fluctuating when using the Young's modulus
and the shear modulus. Indeed, the bulk modulus is not very well
defined for slightly anisotropic materials, as it is the case here for
small strains.

For small applied strain, the apparent materials stiffness observed in
Fig. 10 and in Fig. 12, is always larger than in the later stages. This is a
consequence of the accumulation of microplastic events for larger ap-
plied global strain. The apparent elastic moduli measured at large
scale, and relatively large applied strains, are indeed the results of the
succession of microplastic events not taken into account usually in
small scale modeling [93,94]. A comparison between the experimental
and the calculated isotropic material properties is shown in Fig. 14, as
a function of Na2O content. The simulated values were taken between
0.45% and 0.6% global strain by averaging the orthotropic constants.
One can observe that the experimental values fit exceptionally well
the simulated ones for compositions between 20% and 40% Na2O. This



Fig. 10. Stiffness matrix components (for x = 30%mol Na2O with the system size of 100 Å) and relative error (Δ) for two compositions (x = 5%mol Na2O and x = 30%mol Na2O), as a
function of the global strain difference ϵ for compression and γ for shear.
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is the rangewhich is called stress-free (from18%mol [95]) in sodium sil-
icates. At this composition the sodium starts to act as network modifier
and lowers the glass transition temperature. Fig. 14 shows that Young's
and shear moduli change monotonously with the sodium content. The
glass becomes stiffer when the amount of sodium decreases (despite
the smaller interaction cutoff). The evolution of the Poisson's ratio and
of the bulk modulus is a little more complicated (the Bulk modulus
being computed with the help of the shear modulus and the Poisson's
ratio as discussed before). In our simulations, in the stressed regime
(low sodium content), we neglect the initial stress field present in the
experimental samples. Therefore our samples appear more homoge-
neous and thus more rigid [96]. Note that this artificially enhanced
rigidity for low sodium content was already mentioned in previous
Fig. 11. Error function (Δ) for the global elastic moduli, as a function of the system size
with γ=0.5%.
studies on pure silica glasses [97,98]. The largest discrepancy appears
in the bulk modulus.

As a conclusion, simulations replicate adequately the macroscopic
elastic behavior of sodium silicate, but the experimental values of
Young's and shear moduli are recovered only for sufficiently large ap-
plied strain (≈0.4%) and sufficiently large sodium content. Our atomis-
tic simulations suggest that the elastic moduli measured in glassy
systems, within the experimental resolution, are only tangent moduli,
and include a large number of microplastic events. This remark is
important when looking for a rigorous microscopic definition of the
elastic stiffness [93]. Moreover, the discrepancy between experimental
and numerical values for low sodium content, suggests that additional
parameters should be taken into account to increase the sources of
heterogeneities in low sodium content samples [95,96,97]. We will
now compare the global values of the elasticmoduli to the local descrip-
tion of the elastic heterogeneities in our samples.

3.3. Local elastic properties

The local elastic properties of the materials can be derived in the
same way as the global stiffness matrix. Local stress and strain fields
are computed using a physically derived coarse-graining procedure
proposed by Goldhirsch et al. [99]. It is based on the coarse-grained
description of the density (Eq. (5)) combined with the mass conserva-
tion equation and with the momentum transport equation [99]. This
method thus allows the preservation of the fundamental equations at
all scales, with a proper definition of local strain and stress tensors.
The coarse-graining procedure was done on a 100 × 100 × 100 grid to
calculate local stress and strain values, following a method analog to
that used in the global case. To calculate the stiffness matrix 36
equations can be expressed for all grid points. Results are presented
for 0.5% global strain deformation where the global moduli are already
stable and reliable. The analysis focuses mainly on the composition of



Fig. 12. a.–c.) Orthotropic material constants as a function of global strain. d.) Orthotrophy for different material constant groups. e.) Calculated bulk modulus using the mean value of
different orthotropic material constants (E ,G ,ν) [90].
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30%mol Na2O because itfits verywell the experimental results, and thus
gives us a reliable insight. Some comparison is made aswell with the 5%
Na2O sample.

The coarse-graining scale (w in Eq. (5)) corresponds to the width of
the Gaussian weight function, namely the area over which data are
averaged. If w is taken too small, local equations for the stress may
become singular. On the other hand for too large w, we get back the
global behavior and loose information about the spatial heterogeneities.
Fig. 13.Comparison of thePoisson's ratioν obtained from thenumericalmeasurement of E
and G, with the Poisson's ratio νISO obtained assuming isotropic elasticity.
The smallest reliable value for w, corresponds to a sufficiently small
relative error Δ. In Fig. 15 the relative error Δ is shown as a function of
the coarse-graining scale. The relative error decreases by increasing
the coarse-graining scale. The initial stage can be well fitted with a
power function, with initial values starting far above 10%. Tsamados
et al. [7] found similar behavior for 2D Lennard-Jones glasses. The
error is completely independent ofw as soonw is sufficiently large to re-
cover the macroscopic scale. The average relative error reduces below
3% at w = 8 Å for x = 30% and x = 5% as well. For such a scale w, the
maximum condition number of M was checked (not shown here), and
a value smaller than 2was found. Therefore, the solution and the results
were considered reliable. At smaller scales where the errors are very
large, a complete mechanical analysis would needmore elaboratedme-
chanical descriptions (like non-linear theories, or higher order gradient
expansions [100]), but whose possible relevancy is beyond the scope of
the present paper. We will thus consider in the following w=8 Å as a
reliable choice for w.

In Fig. 16, the isotropic material constants are shown as a function of
w. The results confirm the previous observations, namely, the fluctua-
tions decrease as the coarse-graining scale increases. Around w=8 Å
the local properties reach the global values within 5% precision for all
compositions. As a result we definitely consider w=8 Å as the best
coarse-graining scale for this analysis. Note that the convergence of
the material constants to the macroscopic values depends on the
sodium content (inset Fig. 16). Local elastic moduli are always stiffer
than the global one for large sodium content (x = 30%mol), but softer
for low sodium content (x = 5%mol). It is however not clear whether
the convergence is faster or slower for the different compositions. For



Fig. 14.Young's, shear, bulkmoduli and Poisson's ratio as a function of composition (global
strain = 0.45–0.6%). Comparison between simulated and experimental [69,70] values.
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example, faster convergence of the Young's modulus (E) was observed
with the material containing 30%mol than with 5%mol Na2O content,
but the opposite holds for the bulk modulus (K). Even if the silica
network is less disturbed for smaller sodium contents, the local
mechanical properties may converge in a slower manner. It means
that the local variation of the composition could have stronger effects
on the mechanical response for dilute sodium content. Similar results
were observed also with experiments (see Fig. 14). The convergence
from the local values of the elastic moduli to the global values is thus
composition dependent.

We will now compare the local elastic moduli to the local chemical
composition. The aim of this analysis is to infer a structural origin to
Fig. 15. Relative error of local estimations of the elasticmoduli, as a function of the coarse-
graining scalew (for x = 30%mol and x = 5%mol Na2O, global strain = 0.5%).
the composition sensitivity of elastic heterogeneities. In the following,
a coarse-graining scale w=8 Å will be used for the calculation of local
properties as discussed before.

Fig. 17 shows the local densitymaps of sodium and silicon, aswell as
the local shear and bulk moduli in the middle plane of the simulation
box. The bulk modulus is computed from the local shear modulus and
the local Poisson's ratio as discussed before. Correlations can be made
visually between silicon density, bulk and shear moduli, while the
local density of the sodium is anti-correlated with them. For quantita-
tive comparison a correlation measurement is introduced:

corr A;Bð Þ ¼
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where A and B are two different quantities on the same n times m 2D
grid. The A stands for the mean value of the elements matrix A. The
structural analysis in the previous section (especially Fig. 4) suggests
that the correlation between silicon and oxygen should be high while
the correlation between densities of sodium and silicon should be neg-
ative. Indeed we find: corr(Si,O)=0.972 and corr(Si,Na)=−0.882. In
Fig. 17(c) and (d) the contour maps of shear and bulk moduli are
shown. The plots look slightly different but contain similar features
indicating amedium correlation. In Tables 4 and 5 the correlation values
between different moduli are shown for compositions of 5% and 30%
sodium content respectively. The largest correlation was observed be-
tween the Young's and shearmoduli. Bulkmoduli aremainly correlated
with Poisson's ratio, but also with shear moduli, especially for large
sodium content. The bulk modulus is however not very well defined
at small scale due to the lack of isotropy. This explains the large relative
error bars in the correlation functions involving the bulk moduli. By
looking at the density of atoms (Fig. 17(a) and (b)) correlations can be
established between the elastic constants and different atomic species.
The corresponding values are presented in Table 6. Silicon and oxygen
have a strong positive correlation with Young's, shear and bulk moduli,
while sodium has a negative correlation with all of them. Only a weak
correlation is found between the local Poisson's ratio and the sodium
density. Sodium weakens not only the shear modulus, as could be ex-
plained by a higher mobility of sodium ion due to weaker interactions
with its neighbors (smaller effective charge), but it weakens also the
Young's and bulk moduli. This proves that the materials rigidity is
given by the silica network, and sodiumweakens it locally by penetrat-
ing the system. The weakening of the original silica network by sodium
explains easily the general decay of the global elastic moduli with sodi-
um content (Fig. 14). The lack of isotropy at small scale makes however
more difficult the connection between local and global bulkmodulus. In
agreement with experimental data, the numerically computed global
bulk modulus increases with sodium content for large sodium content
in opposition with the locally measured weakening. This may be due
to the precise interconnection of the percolating cluster of sodium
within the silica network that embed the global collapse of the
structure, and consequently volume changes.

We have seen in this part, that the stiffness of sodiumsilicate is given
by the silicon-oxygen network, which is weakened in general both
microscopically and macroscopically by the presence of sodium ions.
Global elastic moduli are recovered as the large scale convergence of
coarse-grained local elastic moduli. The convergence scale depends on
the composition, as well as on the modulus considered. For example,
the convergence scale of the shearmodulus is smaller for larger sodium
content, but it is the opposite for the bulk modulus. The weakening of
the elastic moduli by the presence of sodium ions does not apply for
the bulk modulus with large sodium content, suggesting a specific
sensitivity of pressure to sodium ions, probably due to large-scale
connections in the channel-like structure discussed in Section 2.4. The



Fig. 16. Local Young's, shear, bulk moduli and Poisson's ratios as a function of the coarse-graining scalew (global strain= 0.5%). The investigated composition is x= 30%mol Na2O. Insets:
relative local moduli for two compositions x = 5%mol and 30%mol, as a function of w.
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large scale description of the bulk moduli for large sodium content
needs indeed a better understanding of the effect of large scale spatial
correlations between sodium density and silica network on its elastic
properties. This is beyond the scope of the present paper, that focuses
on the numerical measurement of the role of sodium on the apparent
linear elastic response.
4. Discussion

The present paper is a detailed numerical study of the early stages of
themechanical response of sodium-silicate glasses as a function of sodi-
um content. We have shown three major results that are important to
understand the microscopic origin of apparent elastic moduli: the first



Fig. 17. (a) Sodium density map, (b) silicon density map, (c) local shear modulus map,
(d) local bulk modulus map, for x = 30%mol Na2O (global strain =0.5%).

Table 5
Correlation between elastic constants, for sodium silicate containing x = 30%mol Na2O.

corr(A,B) E G K ν

E 1 0.86 ± 0.05 0.56 ± 0.07 −0.13 ± 0.08
G 1 0.77 ± 0.07 0.03 ± 0.18
K 1 0.65 ± 0.09
v 1
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result concerns the description of empirical interactions and the role of
the interaction cutoff on themechanical properties; the second result is
related to the existence of underlying microplastic events even at low
Table 4
Correlation between elastic constants, for sodium silicate containing x = 5%mol Na2O.

corr(A,B) E G K ν

E 1 0.79 ± 0.06 0.51 ± 0.06 0.04 ± 0.05
G 1 0.72 ± 0.01 0.16 ± 0.09
K 1 0.79 ± 0.05
v 1
applied strain; the third result is related to the convergence of local elas-
tic properties and its sensitivity to the glass composition.

The influence of interaction cutoff on the mechanical properties of
glasses was extensively studied before [12,62–64]. We see here that
varying the cutoff of the non-Coulombic part of the interactions only
is sufficient to affect strongly the pressure/density relation, and the
elastic moduli. The cutoff value chosen to satisfy the pressure/density
relation seems to be convenient as well for the elastic properties, and
does not change sensibly the structural properties that compare quite
well to the experiments. To match the glass densities measured in
experiments, a moderate value for the cutoff is needed. It means that
the cutoff is not just an approximation used to simplify the interactions,
but is needed to describemore accurately intrinsic properties of glasses.
The cutoff is shown to increase with the sodium content. A wrong esti-
mate of the cutoff would lead to underestimation of the elastic moduli
for low sodium content (a smaller cutoff inducing smaller stiffness). It
was shown in opposite, that the numerical measurement obtained in
this paper, gives rise to slightly larger estimates of the elasticmoduli, es-
pecially for low sodium content. The cutoff is thus not responsible for
this discrepancy. In general, the good comparison obtained between
the numerical results and the experimental measurements strengthen
strongly our method.

It is important to known how to define elastic moduli from a micro-
scopic point of view, at least for materials design [101]. We have seen
that the minimum size needed to recover size independent moduli is
50 Å for sodium-silicate glasses. Moreover, the elastic moduli are sensi-
tive to the applied strain. For low applied strain (γb0.1%), the elastic
moduli measured in a 100 Å large sample fluctuate a lot. The material
becomes isotropic at γ=0.16%, and then the two remaining elastic
moduli saturate to a well defined value. It is thus somehow nonsense
to identify the elastic moduli with an applied strain smaller than
0.16%. But for larger applied strains, the tangentmoduli are properly de-
fined. However, for such a large applied strain (γN0.16%), elasticmoduli
do not correspond to strictly irreversible processes at small scales.
Indeed, due to the large number of degrees of freedom at small scale
(proportional to the number of atoms), it is highly probable that some
dissipative events, or mechanical instabilities, occur during the defor-
mation. It is indeed what happens in our numerical systems. This
explains the apparent smaller stiffness observed at larger applied
strains. These small scale dissipative processes, or microplastic events,
were already invoked to explain the so-called “elastic anomaly” in silica
glasses [30]. They were also observed with Brillouin scattering
experiments in silica glasses, where the apparent decay of the sound
velocity coincidedwith an increase in the linewidth used to quantify in-
ternal friction [8]. Our numericalmeasurements show that it is hopeless
to define elastic moduli at a microscopic scale [93], without taking into
account small scale dissipative processes. However, a realistic descrip-
tion of small scale dissipative processes involves sufficiently large
Table 6
Correlation between elastic constants and atomic species, for sodium silicate
containing x = 30%mol Na2O.

corr(A,B) E G K ν

Si 0.85±0.06 0.86±0.04 0.58±0.10 −0.10±0.17
O 0.90±0.04 0.89±0.04 0.64±0.09 −0.03±0.16
Na −0.64±0.10 −0.68±0.05 −0.38±0.12 0.21±0.17
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system sizes. This result is important, since the estimated elastic moduli
can vary by a factor larger than threewith the two different approaches.
Moreover, such an approach definitely changes the perspectives of
materials design.

Finally, the connection between local composition and local elastic
moduli is very interesting to explore. Sodium-silicate glasses are exam-
ple of materials where the increase of complexity in the composition
simplify the mechanical response. Indeed, the presence of sodium ions
always weakens the local stiffness. Low local stiffness is frequently
considered as places where plastic instability will occur [7,102]. Sodium
ions will thus probably act as catalysts for plastic deformation. Any
process preventing sodium motion will increase the elastic limit. In
opposite, adding sodium in the silica network should facilitate the
plastic deformation and increase the ductility in a simple way. It
would be interesting to pursue the comparisonwith the different failure
modes observed in silicate materials [5]. At large scale, the complex
organization of sodium ions along percolating prolate clusters affects
the bulkmodulus, therefore thedescription of the stiffnesswill probably
become more complex during the plastic response upon hydrostatic
compression. Such a work opens new perspectives in the study of
plastic deformation.

5. Conclusion

To conclude, we have studied extensively the influence of the sodi-
um content on the apparent elastic properties of a numerical model of
sodium-silicate glass. We have first shown the influence of the cutoff
of the non-Coulombic part of the interactions, on the elastic and struc-
tural properties of the glass. We have studied in detail the structural or-
ganization of Na ions in the silica network, showing evidence of
percolating Na rich elongated clusters, with aspect ratio of 7–9. This
long-range organization of sodium along percolating clusters, probably
affects the large scale mechanical properties, especially the bulk modu-
lus. It would be important now to understand the connection between
the large scale organization of sodiumwith the bulkmodulus, especially
for low sodium content were channels yield to very heterogeneous
structures. This question is important as well to understand, if the
discrepancy observed in the bulk modulus for low sodium content
results from channel-like structure, or from quenched stresses (as
suggested previously).

The study of the early stages of themechanical response upon triax-
ial compression, and simple shear, shows clearly the influence of the ap-
plied strain on the apparent elastic moduli. We concluded that below
0.1% strain, the elastic moduli measured from the stress–strain relation
strongly fluctuate, due to intermittent instabilities. The regular and iso-
tropic behavior is recovered at 0.16% strain. For such an applied strain,
the material appears softer, due to the occurrence of microplastic
events, as already shown in other systems. This observation raises the
question of the proper definition of elastic moduli at a micro-scale. We
suggest that the definition yielding to the best experimental compari-
son, includes the occurrence of microplastic events not detectable
experimentally.

The study of local mechanical response has shown a progressive
convergence from the local behavior to global properties, with
increasing coarse-graining scale. This convergence depends on the
composition, and on the modulus. For example, the convergence to
the macroscopic value of the bulk modulus is slower for larger sodium
content, but the convergence to the shear modulus is faster in the
same case. At a local level, there is a strong correlation between silica
network and higher stiffness, and opposite correlation with Na rich
places. Sodium always weakens the local elastic properties, and should
probably enhance the plastic instabilities. The smallest scale at which
the material can be described within linear elasticity is w=8 Å. Below
that scale, displacements strongly vary, giving rise to ill-defined
strain-tensor and non-linear relation between local stresses and local
strains. The departure from the linear elastic behavior is however crucial
to induce irreversible motion. A predictive model of damage should
thus take into account the processes occurring at such a small length-
scale.
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