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Abstract. The review paper explores the significance of characteristic lengths in fracture mechanics, focus-
ing on the Coupled Criterion framework. It addresses limitations in traditional Linear Elastic Fracture Me-
chanics, which struggle to predict small-scale crack behaviors, and highlights the need for models that allow
characteristic lengths to emerge from material properties and geometry rather than being predefined inputs.

The review covers two main characteristic lengths: the initiation crack length and Irwin’s length, examin-
ing their interactions with lengths used in other fracture approaches such as Phase-Field methods, Cohesive
Zone Models, and atomic-scale simulations. The findings show that Irwin’s length consistently appears in
models that combine stress and energy criteria, indicating its fundamental role in fracture prediction.

The study identifies limitations in current models, especially in cases involving strong singularities or
where the energy condition dominates, and suggests improvements by incorporating process zone descrip-
tions or regularization techniques from Phase-Field models. These enhancements could better capture the
complex behaviors at smaller scales.

The paper concludes by advocating for a combined approach that integrates various fracture models,
which could provide a more comprehensive understanding of crack initiation and propagation across differ-
ent scales. This integrative strategy would allow for more accurate predictions and a deeper insight into the
mechanics of fracture.

Résumé. Cet article de revue explore l’importance des longueurs caractéristiques en mécanique de la rup-
ture, en se concentrant sur le cadre du Critère Couplé. Il met en lumière les limites des approches tradition-
nelles de la mécanique de la rupture élastique linéaire, qui peinent à prédire les comportements des fissures
à petite échelle, et souligne le besoin de modèles permettant aux longueurs caractéristiques d’émerger des
propriétés des matériaux et de la géométrie, plutôt que d’être définies a priori.
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La revue couvre deux longueurs caractéristiques principales : la longueur de fissure d’initiation et la
longueur d’Irwin, en examinant leurs interactions avec les longueurs utilisées dans d’autres approches de
rupture, telles que les méthodes de champ de phase, les modèles de zone cohésive et les simulations à
l’échelle atomique. Les résultats montrent que la longueur d’Irwin apparaît systématiquement dans les
modèles combinant des critères de contrainte et énergétique, soulignant son rôle fondamental dans la
prédiction de la rupture.

L’étude identifie les limites des modèles actuels, en particulier dans les cas impliquant des singularités
fortes ou lorsque la condition énergétique domine, et propose des améliorations en incorporant des descrip-
tions de zone de processus ou des techniques de régularisation issues des modèles de champ de phase. Ces
améliorations pourraient mieux capturer les comportements complexes à des plus petites échelles.

L’article conclut en prônant une approche combinée intégrant divers modèles de rupture, ce qui pourrait
offrir une compréhension plus complète de l’initiation et de la propagation des fissures à différentes échelles.
Cette stratégie intégrative permettrait des prédictions plus précises et une compréhension approfondie des
mécanismes de la rupture.

Keywords. Finite fracture mechanics, Coupled criterion, Characteristic length, Crack initiation, Irwin’s
length.

Mots-clés. Mécanique de la rupture finie, Critère couplé, Longueur caractéristique, Initiation de fissure,
Longueur d’Irwin.
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1. Introduction

Linear Elastic Fracture Mechanics (LEFM), introduced by Griffith [1, 2], addresses the limitations
of traditional mechanics in predicting failure in structures containing sharp defects. Stress-
based methods suffice for smooth, flaw-free materials, but they fail around cracks, where stresses
theoretically peak to infinity. Griffith’s energy-based approach relies on the energy release rate
to predict crack growth, thus avoiding the consideration of stress singularities. However, LEFM
assumes a defect large enough to disregard smaller-scale phenomena near the crack tip, leading
to the concept of a non-linear transition length scale, which defines the boundary between
the linear elastic region and more complex fracture processes like plasticity or other dissipative
mechanisms.

Despite its effectiveness for large cracks, LEFM cannot fully capture behaviors at this smaller
scale. Additionally, most structures are not designed with pre-existing macroscopic cracks,
making Griffith’s theory impractical in such cases, where it would predict an unrealistic infinite
load-bearing capacity. As a result, engineering standards continue to predominantly rely on
stress-based criteria for materials where significant defects are not anticipated.

The first empirical observations of the size effect date back to Leonardo da Vinci [3, 4], who
noticed that shorter cable segments were stronger than longer ones, though he did not provide a
practical explanation for this phenomenon. It was Galileo Galilei who later formulated the correct
scaling laws for materials under tension and bending [5], emphasizing how size effects limit the
structural integrity of large natural and man-made structures. Centuries later, as iron and steel
became more widely used, concerns about brittle fracture grew, prompting early material failure
testing [6]. Around the same time, Mariotte [7], through extensive experimentation, suggested
that the size effect observed by da Vinci was likely due to internal faults, concluding that larger
structural elements have a higher probability of containing weak spots, thus reducing their
overall strength.

Alongside the development of fracture mechanics, researchers began exploring statistical
theories to explain the power-law scaling observed in experimental data. Peirce [8] introduced
the weakest-link model for chains, building on extreme value statistics by Tippett [9]. This line
of work reached a milestone with Weibull [10, 11], who developed the Weibull distribution to



Gergely Molnár et al. 93

model failure probability based on low-strength extremes, establishing a power-law relationship
between material strength and failure probability, especially in materials with microscopic flaws
or microcracks [12]. This statistical approach has since been applied across various materials
and fracture phenomena [13–16]. While widely accepted, in this paper, we focus on a physically-
based deterministic approach, recognizing that a combined statistical-deterministic framework
can provide a more comprehensive view of material failure across scales.

The non-linear scaling law, first documented by Irwin in the 1950s [17], was initially over-
looked or considered a statistical anomaly. Motivated by the observation that large concrete
structures (such as dams and bridges) behave differently from small laboratory specimens,
Bažant conducted a series of experiments [18]. He eventually published his theoretical explana-
tion in 1986, describing a non-linear scaling law in fracture mechanics [19]. Bažant emphasized
the need for non-linear analysis to account for the significant size effects observed in various en-
gineering structures. This phenomenon has since become critical for the design of large-scale
composite structures such as ship hulls or structural fuselages, as well as in fields like geotechni-
cal and arctic engineering. For example, evaluating fault slip stability in the Earth’s crust involves
scale transitions that span multiple orders of magnitude.

Bažant [20] further showed that fracture resistance in many materials deviates from the power-
law predictions of linear elastic fracture mechanics, especially when the initial flaw size is smaller
than a critical value. In such cases, stress-based criteria should be applied. The existence of
this critical length scale has since been demonstrated in various materials, including ceramics
[21–24], polymers [25, 26], silica glass [27], silicon carbide [28], fiber composite laminates [29],
wood [30], concrete, rock [31], spider silk [32] and even sea ice [33]. However, experimentally
demonstrate this non-linear scale transition is challenging, as it requires testing specimens across
multiple size ranges.

The transition length scale is often compared to the size of the fracture process zone (FPZ),
a region around a crack tip where complex, nonlinear deformation occurs. The FPZ, character-
ized by a transition from elastic to inelastic behavior, plays a critical role in fracture mechan-
ics. In the 1950s, Irwin [34] and Orowan [35] used X-ray measurements to demonstrate that
even in brittle materials, there is evidence of regularization along crack surfaces. They indepen-
dently concluded that the true critical energy release rate should be several orders of magnitude
larger than Griffith’s original proposal. Later, Barenblatt [36] and Dugdale [37] theorized that ma-
terial near the crack yields, and this local cohesive traction limits the otherwise infinite stress
peak.

Since then, numerous experimental techniques [38–47] have been developed to measure the
size and shape [48] of the FPZ in brittle materials. These studies commonly assume that the
FPZ is a damaged region around the crack tip linked to irreversible microstructural changes.
The FPZ has been observed in materials such as concrete [49], granite [38], natural faults
[50], wood [51], model materials [52], and silica glass [53]. A comprehensive review of the
FPZ can be found in the thesis of Brooks [54]. Today, digital image correlation [55] is the
primary technique used to quantify the FPZ, although other methods exist for transparent
materials like polycarbonate [56] or for X-ray measurement in concrete [45]. Döll and Könczöl
[57, 58] used optical interferometry to measure crack tip opening displacement in polymethyl
methacrylate, polystyrene, and polycarbonate. Their findings indicate that, for these materials,
the experimentally measured opening profile aligns well with predictions from an appropriate
Dugdale model.

While the non-linear scaling law is widely accepted, its underlying cause remains a topic of
active debate. This is particularly important given the rise of advanced manufacturing techniques
that allow the creation of architected materials with structural elements smaller than the critical
length scale of bulk materials, resulting in exceptionally strong overall responses [59].
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In this review paper, we will explore recent methods and theories that effectively account for
this non-linear length scale. This length scale can either be explicitly incorporated as a material
parameter or arise through the coupling of different criteria.

Even if well-described by various fracture mechanics models through numerical experiments,
it is not always straightforward to explain this transition between strength-based and energy-
based descriptions of fracture. This transition is clearly understood using the Coupled Criterion
(CC) concept [60], that was proposed to rationalize transverse cracking experiments in laminated
composites by Parvizi, Garrett, and Bailey [61]. Their results showed two distinct regimes: for
sufficiently thick plies, the strain at crack initiation remained constant, whereas it increased
with decreasing ply thickness for thin plies. A criterion based solely on critical stress or strain—
first introduced by Lamé and Clapeyron [62]—could only account for the failure of thick plies.
Extending this approach to a non-local stress evaluation, either averaged over a finite volume [63]
or at a specific distance [64–66]—known as the Theory of Critical Distances [67]—did not explain
the increase in strain at failure for thin plies. Since Griffith’s energy approach cannot predict crack
initiation, an energy-based criterion applied to a finite crack surface increment was introduced,
representing crack initiation across the full ply thickness. This idea was already suggested in
Aveston and Kelly’s model [68] and was later formalized as Finite Fracture Mechanics (FFM) by
Hashin [69] and then by Nairn [70], successfully explaining the size effect in thin ply fracture.
However, it underestimated the load level for crack initiation in thick plies. Dominique Leguillon
[60] eventually proposed combining a non-local stress criterion with an energy criterion applied
to a finite crack surface increment, asserting that both conditions must be met simultaneously
for crack initiation. This approach effectively explains the transition from tensile strength-driven
failure in thick plies to energy release rate-driven failure in thin plies.

The CC highlights that the nonlinear fracture resistance scaling is driven by the ratio between
the initial flaw size and the Irwin’s length. It results from the initiation length emerging from
the coupling between the strength-based and energy-based criteria. Our primary focus will thus
be on the CC [60], one of the earliest approaches to offer a mechanics-based explanation for
the emergence of a process zone. We will then relate macroscopic theories, such as the theory
of critical distances, the Phase-Field method, and the Cohesive Zone Model, to the fundamental
concept of the Coupled Criterion. We also demonstrate how approaches that model atomic-scale
behavior can bridge the gap between the continuum scale and the actual material properties.

The paper is structured as follows. First, in Section 2 the basics of the Coupled Criterion
is presented with particular attention to the emerging length scale. Then in Section 3, we
summarize the literature comparing the results of the Coupled Criterion with other theories and
numerical methods with allow us to have a length scale explicitly or by emergence. In Section 4,
we compare and contrast the results obtained with the methods, highlighting their similarities
and differences. Finally, in Section 5, we draw conclusions based on our findings.

2. The characteristic lengths in the Coupled Criterion

The Coupled Criterion (CC) [60] is an approach in fracture mechanics that enables us to study
fracture analysis in a wide range of applications [71, 72]. The underlying concept of the CC is
that crack initiation occurs when two conditions are simultaneously met. The first condition
arises from an energy equilibrium between the states before and after crack initiation over a
specified surface S. This allows for the definition of the incremental energy release rate (IERR),
given linear elastic material behavior and negligible inertial effects, as Ginc = (δWext −δWel)/S,
where Wext represents the work done by external forces, Wel the elastic strain energy, and S the
crack surface area. The IERR approaches the energy release rate (ERR) G as the crack surface
area approaches zero. The CC model is thus consistent with Linear Elastic Fracture Mechanics
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Figure 1. (a) Three-point bending of a specimen with a V-notch. (b) Characteristic expo-
nent of the singularity λ corresponding to the opening mode as a function of β, the angle
of the V-notch.

(LEFM) for sufficiently long cracks (under LEFM assumptions), while also enabling the study of
crack initiation, which LEFM cannot handle as G tends toward zero when the crack surface tends
toward zero. The energy condition for the CC is expressed as:

Ginc ÊGc, (1)

where Gc is the material’s critical ERR.
The second condition of the CC states that the stress along the prospective crack path must

be sufficiently large. This introduces a non-local stress criterion, which can be expressed as
a function of the stress tensor components and the material strength surface. For a material
adhering to a Rankine’s strength surface [73], it is given by:

σnn(x) Êσc∀x in Γ, (2)

whereσnn is the stress normal to the crack path Γ before initiation, andσc is the material’s tensile
strength.

Applying the CC involves combining both the stress and energy conditions to determine the
minimum load magnitude at which both criteria are simultaneously met for at least one given
crack surface.

An emblematic illustration of the CC is the initiation of a crack at the tip of a V-notch, where
the free surfaces form an angle β, as seen in a notched specimen under bending, illustrated in
Figure 1.

The case β = 0° corresponds to an initial crack and reverts to LEFM (i.e., crack propagation
based solely on energy) provided the crack is sufficiently long [74]. The caseβ= 180° corresponds
to a straight edge with no notch; here, the stress is homogeneous, allowing a criterion based on
material tensile strength if the specimen is large enough [60, 75]. An asymptotic approach yields
the stress normal to the crack path before initiation σnn and the IERR for a crack of length ℓ at
the notch tip [76]: σnn(r,θ = 0) = Kℓλ−1,

Ginc(ℓ) = K 2

E
ℓ2λ−1 Aβ,

(3)

where r and θ are the polar coordinates, E is Young’s modulus, and λ is an exponent character-
izing the singularity, varying between 0.5 for a crack (β = 0°) and 1 for a straight edge (β = 180°).
In-between cases are presented in Figure 1b. The dimensionless function Aβ depends on the
problem’s geometry (notably the notch angle β) and the local loading at the singular point, repre-
sented by the generalized stress intensity factor (GSIF) K . The GSIF drives the magnitude of the
local stress field variation near the V-notch tip. It is a characteristic parameter that can be used to
study the nucleation of a crack, i.e., crack initiation occurs when a critical GSIF is reached. It is
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calculated based on a path-independent contour integral [76, 77]. Under a linear elastic frame-
work and assuming small deformations, the GSIF is proportional to the applied load F , shown in
Figure 1a.

If 0 < β < 180°, the stress tends to infinity as r approaches 0, making a stress-based criterion
alone ineffective, as it predicts crack initiation under an infinitesimal load. Conversely, the IERR
approaches 0 as the crack length approaches 0, meaning an energy-based criterion alone does
not predict crack initiation either. This indicates a missing element in crack initiation studies:
a length scale. One approach is to introduce this length as an additional input parameter to the
stress criterion (yielding the Theory of Critical Distances [67]) or in conjunction with the energy
criterion, resulting in an incremental energy approach within Finite Fracture Mechanics [69, 70].

Another possibility is to use the CC, i.e., to combine the stress criterion and the energy
criterion, which are already valid for the two extreme cases (β= 0° andβ= 180°). We then look for
the minimum loading level and the corresponding crack length for which both criteria are met.
The combination of the two criteria introduces a characteristic length into the problem, which is
not an input parameter but rather the result of this coupling. We then obtain the initiation crack
length ℓi and the GSIF Ki at initiation [60, 78]:

ℓi = EGc

Aβσ
2
c
= ℓmat

Aβ
,

Ki =
(

EGc

Aβ

)1−λ
(σc)2λ−1.

(4)

We note that the GSIF is homogeneous to the product of a stress and a length to the power
(1 − λ). For a straight edge, λ = 1 and the GSIF at initiation becomes Ki = σc (Ki is then
homogeneous to a stress), thus reducing to a stress criterion. In the case of a crack, λ = 1/2

and we return to Irwin’s criterion Ki = KIc =
√

EGc/Aβ (Ki is then homogeneous to a critical stress
intensity factor). LEFM is therefore included within the CC formulation, allowing for the study of
both crack initiation and the propagation of an existing crack. The proposed formulation remains
general, as it can address crack initiation with or without a singularity.

In addition to the initiation length, the combination of the two criteria introduces another
characteristic length, Irwin’s length ℓmat = EGc/σ2

c [17], which is intrinsic to the material since
it depends only on its elastic and fracture properties. The asymptotic approach reveals that
the initiation length is actually related to Irwin’s length through the dimensionless coefficient
Aβ, which depends on (i) the geometry (here the V-notch angle) and (ii) the loading (here the
GSIF) [24, 77]. In the following, we examine how these two lengths in the CC formulation (i.e.,
the initiation length and Irwin’s length) correspond to other characteristic lengths encountered
in various fracture mechanics approaches.

3. Correlation with lengths involved in other fracture approaches

In this section, we focus on different approaches able to describe the nonlinear fracture resis-
tance scaling, similarly to the CC. Even if based on different fracture description and involving
different input parameters, we thus provide an insight on how the characteristic and intrinsic
length scales involved in these approaches are related to the one obtained in the CC: the initia-
tion length and Irwin’s length.

Figure 2 illustrates schematically how various major techniques facilitate the emergence of a
characteristic length scale, which subsequently aids in describing the nonlinear scaling observed
in experiments.

For the Coupled Criterion (CC), a characteristic length emerges as the distance where both
energy and stress criteria are simultaneously satisfied. This length can consistently be correlated
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Figure 2. Summary of the key methods discussed, highlighting how each technique inte-
grates material length scales into its framework and how these are reflected in simulation
outcomes. In the figure d represents damage, lc is the phase-field length scale, a is the crack
length and δc is the critical separation when the crack is fully open.

to Irwin’s fundamental metric. Notably, studies have shown that if the initial crack is sufficiently
sharp and large compared to the material’s intrinsic scale, the resulting length remains constant
[74]. This observation provides a possible explanation for the effectiveness of the Theory of
Critical Distances (TCD): evaluating the stress at a fixed distance produces results comparable
to more advanced criteria.

In smeared damage approaches, such as the Phase-Field (PF) and Thick Level Set (TLS)
methods, a regularization length is inherently introduced. This regularization modifies the stress
profile, resulting in a slight alteration not only near the crack tip but also in the tail of the
theoretically elastic stress response for the same macroscopic equilibrium. This phenomenon
raises an important question: at what distance does the calculation of experimental toughness,
based on a fit to the singular solution, remain valid?

The Cohesive Zone Model (CZM) operates in a manner similar to smeared damage methods,
defining the tension–separation law as an input parameter. However, CZM offers greater flexibil-
ity by allowing the critical separation to be specified, which results in a certain damage diffusion
length representing the process zone ahead of the crack tip. The latter also depends on the ge-
ometry, boundary conditions and local stress state. Despite this advantage, the technique suffers
from a significant limitation: it requires prior knowledge of the crack path.

Finally, particle-based methods, such as molecular dynamics (MD) and peridynamics, treat
the material as a discrete system of particles. In peridynamics, the horizon explicitly defines
the characteristic length scale. In atomic-scale simulations, the interaction between interatomic
potentials and the realistic atomic structure leads to the emergence of a localized, inelastic zone
around the crack tip [53].

This section discusses these various methods and evaluates their potential for comparison
with the Coupled Criterion. We will highlight results from the literature that address the nonlinear
scaling transition and examine the underlying mechanisms involved.

3.1. Theory of critical distances

The approaches based on the Theory of Critical Distances (TCD) are commonly used for engi-
neering failure prediction [67, 79]. Since a local maximum stress criterion is unsuitable for pre-
dicting the experimentally observed size effect, even for non-singular stress fields [80], TCD com-
pares the stress at a specified distance from a stress concentration or singular point to the mate-
rial tensile strength.
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Figure 3. (a) Initiation length normalized by Irwin’s length as a function of the V-notch
angle predicted using the CC for a V-notch in an infinite medium. (b) Ratio between the
GSIF obtained using either the CC (K CC

i ) or the TCD (K TCD
i ) as a function of the V-notch

angle.

The CC and the TCD have been compared in various configurations, e.g., to study the fatigue
limit of V-notch specimens [81]. Regardless of the notch radius, the critical distance remains
constant in the TCD, whereas it decreases with increasing notch radius in the CC. By basing the
TCD critical distance on Irwin’s length, a relationship between the critical crack advance for both
approaches—independent of material parameters—was derived. This result aligns with the fact
that the initiation crack length in the CC is proportional to Irwin’s length [24, 77].

Chao Correas et al. [80] demonstrated that both the CC and TCD describe the gradual tran-
sition between two stress-driven solutions for crack initiation at a spherical void (for small and
large void radii, respectively). The transition between these regimes falls within the same range
of void radii relative to the material characteristic length.

Campagnolo et al. [82] compared the CC to the Strain Energy Density (SED) approach for
crack initiation at a V-notch under in-plane shear loading. The SED model considers the strain
energy density over a control volume around the crack initiation site as the critical parameter.
Both methods showed that the apparent SIF at crack initiation is proportional to powers of KIc

and σc, differing only in the proportionality factor, which depends on the notch angle in the CC
and Poisson’s ratio in the SED approach. Both methods predicted similar apparent SIFs at crack
initiation for this configuration, with the control volume radius based on Irwin’s length [82, 83].

The primary distinction between the TCD and CC is that in TCD, the characteristic length is
an input parameter, while in CC it is an output derived from combining the stress and energy
conditions. Several ways of nonlocal stress evaluation exist, such as integration over a volume or
the use of pure nonlocal functions [84, 85]. One of the first method proposed was to evaluate the
stress at a given distance from a singular point. For example, applying the TCD as a point stress
criterion at a distance equal to Irwin’s length (σnn(ℓmat) =σc) yields:

Ki = (EGc)1−λσ2λ−1
c . (5)

This expression only differs from the one obtained using the CC by the coefficient Aβ (see
Equation (4)), reflecting that the TCD disregards geometry, whereas the CC accounts for it
through Aβ. Figure 3 illustrates the differences between the TCD and CC in predicting crack
initiation at a sharp V-notch.
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The normalized initiation length obtained using the CC for different V-notch angles is shown
in Figure 3a. It indicates that the initiation length using the CC is generally smaller than Irwin’s
length and depends on the geometry. In addition, Figure 3b shows the ratio between the GSIF
obtained using the CC or the TCD as a function of the V-notch angle. Based on Equations (4)
and (5), this ratio is given by K CC

I /K TCD
I = Aλ−1

β
. Using LEFM normalization of displacement

fields, a ratio of 1 is achieved for β= 0° and β= 180°, with a non-monotonic trend as β increases.
Specifically, Aβ = 1 for β= 0, decreasing with increasing β, while λ increases from 1/2 (β= 0°) to
1 (β = 180°). Overall, differences of less than 20% can be expected between the CC and TCD in
predicting crack initiation at a V-notch in an infinite medium.

Since the TCD disregards the overall specimen geometry, questions arise about its application
for small-scale specimens, where size may be smaller than Irwin’s length. This method may
also be unsuitable for initiation configurations driven by the energy criterion, such as transverse
cracking in thin composite laminates [60, 86, 87].

3.2. Phase-field

Fracture Phase-Field (PF) models [88, 89] approximate crack discontinuities through a smeared
damage field controlled by a length scale parameter (lc), which defines the extent of damage.
These models balance elastic energy with diffused fracture energy to identify the energetically
favorable crack front, using fracture toughness (Gc) and the regularization length (lc) as primary
inputs.

Both the CC and PF approaches use the critical energy release rate (Gc) as an input parameter,
but they differ in how they handle tensile strength: CC explicitly incorporates it, while PF replaces
it with the regularization length (lc). In simulations of notched thin ply laminate fractures,
Reinoso et al. [90] showed that the CC method effectively captures the size effect and accurately
predicts failure stress, whereas the PF approach slightly underestimates failure stress, with lc

chosen to match the experimentally measured displacement around stress concentrators.
Early studies comparing CC and PF results [91] found good correspondence between the

two methods, although the choice of lc was often based on matching maximum tensile stress
under uniaxial loading to the material’s tensile strength. Strobl et al. [92, 93] simulated Hertzian
indentation-induced fractures using both CC and PF, noting consistent trends in crack location
and critical displacement, with lc determined using the homogeneous Phase-Field solution
under uniaxial tension.

Kumar et al. [94] addressed PF’s tendency to overestimate critical loads at the onset of damage
by explicitly incorporating a stress criterion, effectively creating a CC-inspired PF approach.
Similarly, Abaza et al. [95] calibrated lc in PF models for notched ceramic specimens to match
apparent stress intensity factors at crack nucleation with those obtained using CC. Jimenez
et al. [96] demonstrated that for small-scale specimens, critical displacements or forces largely
depend on Gc, using CC to guide the load range selection in PF models and suggesting PF as a
preliminary step for CC when the crack path is not known a priori.

A comprehensive comparison of CC and PF approaches was provided in Ref. [74], which
studied tensile opening and in-plane shear fractures, proposing a correlation between tensile
strength and lc that depends on the stress state:

σc ≃σmax = η
(
ν,
σ2

σ1
,
σ3

σ1

)√
EGc

lc
, (6)

where η accounts for the stress state. This work was later extended to antiplane shear [97].
In these studies, different aspects were compared, such as critical initiation load in tension,
branching angle in simple shear, and facet spacing in antiplane shear.
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Figure 4. (a) Summarized correlations between the tensile strength (σc) and the internal
length scale (lc). The blue shade represents the accessible space based on the homoge-
neous solution. (b) Correlation between lc and the initiation lengths and characteristic dis-
tances.

The results are summarized in Figure 4. The correlations for tensile opening, in-plane, and
antiplane shear fracture modes show a general trend: as the regularization length (lc) decreases,
the material strength (σc) increases. However, this relationship cannot be captured by a single
master curve; instead, it forms a failure surface varying within the range defined by Equation (6),
shown by the shaded area in Figure 4a. Although the initiation length ∆ac does not explicitly
appear in the PF, it is crucial for determining where the stress and energy criteria are satisfied
simultaneously, with its correlation to lc being linear across different fracture modes.

The results suggest that lc serves as an intermediate parameter between Irwin’s intrinsic length
and the actual process zone size, though it cannot fully account for the effects of macroscopic
geometry. This raises the question of whether materials have a single tensile strength (as
per Rankine’s theory [73]) or if the maximum tensile strength is influenced by the stress state
(corresponding to another strength surface in the principal stress space).

Furthermore, studies [74, 98] showed that, similar to the CC, the PF method satisfies both
energy and stress criteria due to an indirect correlation between the maximum tensile stress and
lc. As lc increases, the process zone enlarges, resulting in lower maximum stress and an earlier
satisfaction of Griffith’s criterion. Thus, higher lc values correlate with lower maximum tensile
stresses needed for fracture.

Additionally, in the PF technique, the stress field is non-singular, requiring the stress tail to be
slightly higher than the singular solution used in the CC to maintain equilibrium. The study of an-
tiplane shear highlighted the need for an enhanced CC model incorporating a regularized stress
field inspired by PF regularization, which would allow the CC to better address three-dimensional
antiplane cracking by introducing a third parameter to account for the crack geometry, as sug-
gested in Ref. [99].

3.3. Cohesive zone

When used in fracture mechanics, a Cohesive Zone Model (CZM) [36, 37] is designed to describe
the formation and evolution of both the crack (corresponding to the traction-free region) and
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the process zone ahead of the crack tip. Given, as input parameters, the material tensile and
shear strengths and critical energy release rate, the CZM defines the traction–separation behavior
between two surfaces.

The cohesive response is triggered once a local critical traction is reached, leading to separa-
tion and a discontinuity in the displacement field across the surfaces, governed by a distribution
of traction. The traction–separation profile mechanically replicates the underlying failure mech-
anisms and remains active until a critical separation δc is reached, at which point a crack nucle-
ates locally. This critical separation δc provides an intrinsic length scale that characterizes the
failure process. As the separation between the two surfaces increases, the traction–separation
behavior progresses to this critical point, defining a characteristic length associated with the dis-
placement jumps necessary for crack formation.

As an example, considering only the opening mode and a bilinear traction–separation profile
in a linear elastic isotropic material, the critical displacement jump is given by:

δc = 2Gc

σc
= 2σc

E
ℓmat = 2εcℓmat, (7)

where εc is the material tensile strain at failure. The critical displacement jump is thus related to
the material’s Irwin’s length and critical strain, making it an intrinsic material property.

In addition, to this characteristic length, another length is involved in CZM which is the extent
of the process zone ahead of the crack. Indeed, the CZM and the CC mainly differ concerning
the description of the cracking process. While the CC relies on a binary description of fracture
considering two possible states, namely undamaged or cracked material, the CZM defines an
intermediate state: the process zone through the description of a traction–separation profile.
This process zone induces another main difference between both approaches since the stress
can locally be larger than the material tensile strength in the CC whereas in CZM, the stress
is always bounded by the material strength within the process zone. The process zone length
depends on the Irwin’s length [100, 101], but contrary to the critical displacement jump, it is
not an intrinsic material property as it also depends on the specimen geometry and boundary
conditions. Cornetti et al. [102] observed that for an initial crack in infinite medium or at
a V-notch, the CZM process zone length was significantly different from the initiation length
obtained using the CC, even if both length variations followed almost identical trends with
respect to the normalized initial crack length. This analysis was then refined [103] by introducing
a weight function in the stress condition of the CC in order to match the CZM. The CZM with
cohesive laws exhibiting earlier softening showed satisfactory correspondence with the CC stress
conditions, modified by weight functions that were elevated near the crack tip and tapered off
with distance. Actually, it was shown that the difference between the failure load predicted
by the CC and the CZM differs as the critical separation (and equivalently the Irwin’s length)
increases [104].

Nevertheless, an equivalence may possibly be determined between the CC and a given
traction–separation CZM profile. Summarizing previous works aiming at the comparison be-
tween the CC and CZM [80, 105–115], it appears that there is not a unique CZM traction–
separation profile that enables retrieving the failure loading and crack length predicted using
the CC. The CZM traction–separation profile corresponding to the CC actually depends on the
geometry, the type of loading, the cracking mechanism and thus has to be identified for a given
configuration. A further comparison between the CC and the CZM was established based on an-
other extrinsic length, i.e., the length of the crack after the unstable propagation following ini-
tiation [114]. It was shown that the range of crack lengths after unstable propagation obtained
with various traction–separation profiles respectively comprised the crack length lower bound
obtained using the CC, and that crack lengths similar to those obtained using the CC were ob-
tained using a bilinear traction–separation profile in that case.
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3.4. Atomic scale simulations

At the smallest scales currently accessible through computational resources to study fracture,
molecular dynamics (MD) simulations [53] offer valuable insights into crack propagation by
using interatomic potentials and detailed atomic structures, thus avoiding the need for additional
numerical parameters. Recent studies [116, 117] have advanced our understanding of finite-
size effects, revealing a critical transition in wear mechanisms at the atomic scale. Specifically,
atomistic simulations show that when asperity contact junctions surpass a critical size, fracture-
induced debris formation occurs, while smaller junctions result in a gradual smoothing through
plastic deformation. This non-linear behavior highlights the crucial role of length scale in
determining whether fracture or plastic smoothing dominates.

Later, Brochard et al. [118] specifically examined brittle failure in two materials: a simplified
2D toy model and graphene. Using molecular dynamics (MD) simulations, the authors inves-
tigate how the stress and toughness criteria contribute to the emergence of a length scale dur-
ing failure. The toy model, consisting of a regular triangular lattice with harmonic interatomic
interactions, allowed for a straightforward theoretical analysis of failure processes. In contrast,
graphene, with its more complex atomic structure and realistic mechanical behavior, served as a
case study for a real material.

For both materials, the authors use MD simulations to observe failure under different condi-
tions, such as varying temperature, system size, and loading rate. Through these simulations, the
study highlighted the emergence of a nonlinear transition length scale at the process zone near
the crack tip. This process zone grew larger as the temperature increased, and the material tran-
sitions from a stress-based failure mode to one governed by energy dissipation at the crack tip.
The results showed that, in graphene, this length scale and the corresponding process zone were
much larger compared to the toy model, demonstrating how atomic interactions and material
properties influence the scaling of strength and toughness. The simulations provided a deeper
understanding of how microscopic bond-breaking processes connect to macroscopic failure be-
haviors, particularly in materials with varying defect types and sizes.

Chao Correas et al. [80] validated their findings by comparing the FFM approach with both
experimental data and atomistic simulations. In terms of atomistic simulations, the study by
Ippolito et al. [119] on β-silicon carbide is highlighted. In this work, atomistic simulations were
used to create a model free of intrinsic defects by removing atoms from a crystalline lattice to
simulate spherical voids. The simulations provided critical material properties, such as fracture
toughness and strength, which allowed for the calculation of the Irwin’s length (characteristic
length scale).

Chao Correas et al. [80] found that the results of the atomistic simulations agreed with the
predictions made by FFM, particularly when using the averaged stress variant. This variant
provided the most accurate results when compared to the atomistic data, which eliminated
scattering from experimental flaws and imperfections. This supported the use of FFM as a
robust predictive tool in materials without inherent defects. The study concluded that atomistic
simulations are crucial for refining predictions of failure in brittle materials, offering a close
match with coupled criteria approaches like FFM in defect-free scenarios.

3.5. Thick level set

The underlying idea of the The Thick Level Set (TLS) model is to constrain the norm of the
damage gradient to control the evolution of a damage field, introducing a characteristic length
which represents the smallest possible distance between a fully damage point and a point where
there is no damage. The characteristic length thus represents the extent of the regularization zone
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around a sharp crack. Zghal et al. [120] compared the (TLS) approach to the matched asymptotic
approach of the CC considering sharp or blunted notches and cavities. TLS and CC resulted
in close apparent strengths for all cases provided the assumptions of the matched asymptotic
approach were satisfied. However, no comparison between the TLS characteristic length and the
CC initiation length was provided.

3.6. Peridynamics

Zhang et al. [121] implemented the CC to study crack initiation at circular holes within a peri-
dynamic framework. They showed that similar strain and stress values were obtained using ei-
ther peridynamics or FE modeling, except locally near the hole edge due to a skin effect aris-
ing from the incomplete non-local horizon for nodes around the hole edge. They also demon-
strated that peridynamics yielded failure stresses similar to those obtained using Finite Fracture
Mechanics [121]. Ultimately, in peridynamics, the characteristic length is defined by the horizon
size.

In a subsequent study, Zhang et al. [122] analyzed the stress and IERR for various horizon
sizes. The main conclusion was that the skin effect influences both stress and IERR, especially
for small crack lengths near a free edge. The stress and IERR values in this region are unreliable,
as the local material response near a free edge differs from that in the bulk due to the incomplete
horizon. They also observed that the region where stress and IERR deviate from the finite element
solution increases with a larger horizon size. Ultimately, the horizon size must be set sufficiently
smaller than the initiation length in the CC. Under this condition, similar stress and IERR values
are obtained, indicating that peridynamics can predict similar initiation loads as the CC.

3.7. Gradient elasticity

The Gradient Elasticity (GE) model and the CC were compared to predict borehole crack initia-
tion under combined pressure and biaxial loading [123]. It was highlighted that the CC is local
in its constitutive law but non-local in the failure criterion, as both stress and energy conditions
must be met simultaneously at a specific distance from the singular point or stress concentra-
tion. Conversely, the GE model is non-local in its constitutive law but local in its failure crite-
rion, treating the governing failure parameter as the local stress concentration factor. The GE
model introduces a characteristic length that defines the distance over which non-local effects
act, smoothing high variations in the elastic stress field. Similar to TCD, the GE model is inap-
plicable below a threshold size where the internal length becomes comparable to the specimen’s
characteristic size. Sapora et al. [123] demonstrated that nearly identical failure stress predictions
can be achieved if the internal length in the GE model is calibrated based on Irwin’s length.

3.8. Continuum damage model

Continuum Damage Mechanics (CDM) [124] provides a framework for understanding how
micro-damage, like micro-cracks or voids, impacts material properties at a larger scale. Kachanov
[125] introduced the damage variable concept to quantify degradation from micro-defects. CDM
uses constitutive models that describe stress–strain relationships and damage evolution equa-
tions based on thermodynamics to predict the transition from micro-defects to failure. Although
classical CDM models uniform damage well, it faces challenges with discontinuities, prompting
the development of gradient damage models [126–130], which include regularization terms to
simulate phenomena like brittle fracture [131] and localized damage [132]. Methods for measur-
ing the characteristic length of nonlocal continua have also been proposed [133].
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Carrère et al. [134] compared the CC with CDM to investigate failure in adhesively bonded
joints. Despite differing definitions of final failure, both models produced similar failure loads
under the assumption of small displacements, as crack initiation occurs just before the specimen
reaches final failure. A characteristic length emerged in the CDM, corresponding to the extent
of the process zone, i.e., the region where the damage variable ranges from 0 (pristine material)
to 1 (fully damaged material). At crack initiation, the process zone extent was found to be larger
than the initiation length predicted by the CC, yet it followed a similar trend with respect to the
material’s critical energy release rate.

4. Discussion

The Irwin’s length appears in all models that couple a stress and an energy criterion, either
directly or indirectly, such as the CC, CZM, and PF models, or as a direct input parameter in
models like TCD. This parameter is intrinsic to the material, obtained from a combination of
other intrinsic material properties. While linking Irwin’s length to the material microstructure
is not always straightforward, connections can sometimes be established. For example, in
polycrystalline ceramics, the intrinsic tensile strength—determined for specimens with extrinsic
defects that are sufficiently small compared to the Irwin’s length [23]—is related to grain size
[135, 136] as well as the critical energy release rate [22]. This implies that the Irwin’s length
depends on grain size and other intrinsic defects present within the microstructure.

Beyond its role as an intrinsic material property, Irwin’s length is crucial for the numerical
implementation of the aforementioned models. It influences computational setups, such as the
choice of mesh size in CZM [100, 101] and CC [77], or the selection of the regularization length in
PF [74, 137].

If no length scale appears in a fracture model, it is unable to assess configurations related to
crack initiation or propagation outside the assumptions of Griffith’s model. A first example is
Linear Elastic Fracture Mechanics, which predicts infinitely large remote stresses for a crack with
vanishing size. This aligns with the assumption of a semi-infinite crack in an infinite medium,
which does not hold for finite or diminishing crack lengths. A second example involves applying
the TCD to specimens smaller than Irwin’s length. Since TCD is based on stress evaluation at a
specific distance or over a volume defined by Irwin’s length, applying it to small-scale specimens
is problematic, as the characteristic length becomes meaningless. A third example concerns
TCD’s application to energy-driven configurations without stress gradients, such as transverse
cracking in laminates with thin plies. In this case, a homogeneous stress field exists within the
plies transverse to the loading direction, so the TCD would predict a failure load based solely
on the stress within the ply, regardless of ply thickness or the evaluation length or volume. As a
result, TCD would miss the observed failure load increase with decreasing ply thickness, which is
primarily controlled by energy.

Even for models coupling stress and energy conditions, there exist pathological configurations
where the failure description remains incomplete. Certain cases highlight where the CC could
be enhanced, specifically when the length effect is effectively “disabled” because the energy
criterion predominates, causing the CC to revert to a purely energy-based criterion. Two primary
configurations exhibit this behavior.

Firstly, in the presence of strong singularities [138–140], the IERR scales as Kℓ2λ−1 withλ< 1/2.
Here, the IERR approaches infinity as the crack length tends toward zero, which means the stress
criterion is always satisfied, causing the CC to revert to an energy-only criterion.

The second configuration involves a semi-infinite crack under remote anti-plane shear load-
ing. An asymptotic approach shows that the stress criterion no longer influences the initiation
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generalized stress intensity factor (GSIF), which is predicted solely based on the energy crite-
rion, K = (Gc/A)1−λσ2λ−1

c , with λ = 1/2. The IERR reaches its maximum for rectilinear propa-
gation [141–143], whereas experimental observations indicate that facets initiate at an angle in-
clined with respect to the primary propagation direction of the initial crack front.

In configurations where the CC fails to predict crack initiation due to the absence of a length
effect, one potentially missing component could be the description of the process zone prior
to initiation. Indeed, the Phase-Field approach can account for the occurrence of facets under
antiplane shear [97], as observed experimentally, with the primary distinction from the CC being
the presence of a process zone that develops before crack initiation. Previous studies have
shown that describing this process zone is essential in PF models to accurately predict other
configurations, such as along the two lips of an initial crack [74, 137, 144].

Incorporating this feature into the CC could improve its predictive capability. For example,
Dominique Leguillon [145] proposed a model to describe a damage zone ahead of a V-notch prior
to initiation. Alternatively, a combination of the crack regularization provided by the PF model
with the CC could be implemented, as demonstrated in Ref. [99].

5. Conclusion

In this review, we examined characteristic lengths in fracture mechanics, with a particular
focus on the Coupled Criterion framework and its interactions with other advanced fracture
models. Our analysis highlighted that the CC, through coupling stress and energy criteria,
uniquely clarifies the conditions under which cracks initiate across various configurations, even
when dealing with theoretical scenarios that may not manifest in reality. By exploring these
boundaries, we gained insights into transition behaviors that occur between configurations and
the convergence of stress and energy requirements for crack initiation.

We observed that while the CC provides a comprehensive understanding of crack initiation,
it lacks certain advantages of other models, such as autonomous crack path determination or
the straightforward handling of multiple cracks initiating and propagating simultaneously. How-
ever, it offers valuable insights into other fracture models through the established inter-model
dialogue. Our position is that fracture models can mutually benefit by extending this dialogue
beyond simple comparisons of predicted failure loads obtained through different approaches.

A promising direction for the CC is to incorporate the regularization provided by the PF model
or the process zone (PZ) description available in CZM. Such integration would allow for a detailed
process zone description before initiation, addressing limitations in configurations where the
length effect vanishes.

The development of such a dialogue between the CC and other fracture models remains an
open avenue, as exemplified by the Discrete Elements Method [146,147], which could offer a way
to describe crack initiation in a manner comparable to continuum mechanics and the CC.
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