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a b s t r a c t 

The continuum scale description of the plasticity of silicate glasses is a difficult task. In addition to sig- 

nificant amount of densification, it has been shown that, depending upon composition, there is a more 

or less pronounced coupling of yield stress with pressure. Moreover, the scant experimental results make 

it difficult it build up reliable, quantitative constitutive equations. To overcome the problem, we have re- 

cently shown that atomic scale simulations can be used to investigate the plastic response of amorphous 

silicates and we have proposed a generic analytical form for the constitutive relations of amorphous sil- 

icates (Molnár et al., 2016a. Acta Mat. 111, 129–137). Here we show how this generic constitutive relation 

can be turned into a quantitative description by calibration from micromechanics experiments. We con- 

sider the case of amorphous silica for which we have most complete sets of data. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

Fracture and strength of silicate glasses have been investigated

ith renewed vigor in the past decade. A large number of pa-

ers have dealt with the relation between composition, struc-

ure, physical and also more advanced mechanical properties - see

ondraczek et al. (2011) for a recent review of the latter. Much

parser have been the effort s towards constitutive relations which

ould properly account for the plastic response under both simple

nd more complex loadings ( Kermouche et al., 2008; Keryvin et al.,

014 ). However, the sound understanding of extreme mechanical

esponse such as strength or cracking, and their composition de-

endence, would greatly benefit from a reliable description of the

esponse at the continuum scale. 

In fact, investigation of the plastic response of silicate glasses at

he continuum scale has been limited by two major issues. First, in

erms of measurements, it is difficult to obtain quantitative exper-

mental data because large scale plastic deformations are preceded

y cracking in most circumstances ( Cook and Pharr, 1990 ). There-

ore, only local ( ie micron-scale) measurements can be performed.

econdly, in terms of description, it has long been known that
∗ Corresponding author. 

E-mail address: gmolnar.work@gmail.com (G. Molnár). 

2  

l  

e  

ttp://dx.doi.org/10.1016/j.mechmat.2017.07.002 

167-6636/© 2017 Published by Elsevier Ltd. 
aterial density may change during plastic deformation, ie there

s irreversible volumetric strain also called densification or com-

action ( Ernsberger, 1968 ). Therefore, we are confronted by a non

onventional type of plasticity, in the sense that it does not con-

erve volume. Moreover, this second observation also points to the

ignificance of hardening in the continuum scale response, which

hanges as the structure of the material evolves with plastic strain.

Faced with the issues of measurement difficulties, evolving

tructure and unconventional plasticity, alternative strategies are

elcome. One of them is to resort to numerical simulations. In

his field, pioneering work deduced a macroscopic yield criterion

sing numerical methods for bulk metallic glasses (BMGs): Schuh

nd Lund (2003) were able to capture the pressure dependence of

he deviatoric yield strength shown experimentally ( Mukai et al.,

0 02; Zhang et al., 20 03 ), using only atomic scale simulations. Due

o the complexity of the topic, only a limited number of pa-

ers have appeared, for metallic glasses ( Schuh and Lund, 2003;

und and Schuh, 2003; Shimizu et al., 2006 ), nano-crystaline met-

ls ( van Swygenhoven et al., 1999; Lund and Schuh, 2004; Salehinia

t al., 2014 ), glassy polymers ( Mott et al., 1993; Rottler and Rob-

ins, 2001 ) and other model materials ( McDowell, 2010; Xu et al.,

014 ). Recently, we have shown that yield surfaces can be calcu-

ated by atomic scale simulations for amorphous silicates ( Molnár

t al., 2016a ). However, this approach is not widespread because

http://dx.doi.org/10.1016/j.mechmat.2017.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2017.07.002&domain=pdf
mailto:gmolnar.work@gmail.com
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Fig. 1. Shear strength as a function pressure for different material densities for sil- 

ica. After Molnár et al. (2016a) and Mantisi et al. (2016) . 
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of some shortcomings of these simulations. With key issues such

as calibration of the potential, size effects and time scale effects,

atomistic simulations usually provide at most qualitative results.

Here we investigate a method to turn the yield surfaces obtained

from molecular statics (MS) into usable continuum scale descrip-

tions of the material response of silicate glasses. We start from a

parametric shape for the yield surface, inferred from MS, which

duly reproduces the known evolutions with irreversible strain and

we calibrate the parameters of the yield function from the avail-

able experimental results. Then the predictions of the resulting

constitutive model are compared to other experiments and mod-

els. We also discuss the missing experimental results which would

be most useful in this context. 

2. Model 

A generic analytical form for the yield criteria of silicate glasses

has been evaluated numerically using Molecular Dynamics (or

more precisely Molecular Statics) following the methodology re-

ported in Molnár et al. (2016b ) and Molnár et al. (2016a ). In brief,

through numerical experiments, different loading combinations

have been applied to various systems modeling several binary glass

compositions. The deformation was applied in a quasi-static man-

ner, therefore no rate dependent effect is observable. The residual

density and residual shear strain have been mapped as a function

of applied stress and pressure. From these maps, a pressure depen-

dent yield strength clearly appeared. We have therefore derived an

analytical expression for the yield criterion as a function of pres-

sure. The flow data obtained in the simulations have not been di-

rectly used for the constitutive relation but it was found that as-

suming associated plasticity we obtained a reasonable rendering

of the computed irreversible strains ( Molnár et al., 2016a; Molnár

et al., 2017b ). 

A typical yield surface is shown in the p − q plane ( Fig. 1 ) for a

model amorphous silica. 1 

The yield surfaces are plotted for different material densities

ranging between pristine to fully densified material. In contrast to

usual metal plasticity, the yield surface for the pristine, undensi-

fied material, forms a dome which reflects the strong coupling be-

tween shear and hydrostatic pressure, as observed experimentally

( Mackenzie, 1963; Meade and Jeanloz, 1988 ). Above some value

of hydrostatic pressure ( ca -5 GPa in this case) shear strength de-

creases with increasing pressure. The strength curve crosses the
1 The criterion is written as a function of two invariants of the Cauchy stress 

tensor: the pressure ( p = −( σx + σy + σz ) 3 ) and the equivalent shear stress: q = √ [
( σx − σy ) 

2 + ( σx − σz ) 
2 + ( σy − σz ) 

2 + 6 
(
τ 2 

xy + τ 2 
xz + τ 2 

yz 

)]
/ 2 ). 

t  

e  

i  

B  

p  
ressure axis at the compressive (hydrostatic) strength which is

he threshold for plastic deformation under pure hydrostatic pres-

ure. Below a pressure of ca -5 GPa, the shear strength decreases

s pressure decreases, similarly defining the tensile (hydrostatic)

trength when the curve crosses the pressure axis. As a result a

eak deviatoric strength arises, equal to about 16 GPa here. As ex-

ected, this yield surface is found to evolve significantly with per-

anent volumetric strain ε pl 
V 

: as density increases, the peak de-

iatoric strength decreases moderately, as well as the tensile (hy-

rostatic) strength (in absolute value), while the compressive (hy-

rostatic) strength increases dramatically. This strong increase of

he hydrostatic compression strength reflects hardening with den-

ification: as density saturates, the plastic response becomes shear

ominated, analogous to BMGs. On the tensile side, the thresh-

ld signals instability: a homogeneous pressure state can not be

aintained and macroscopic voids nucleate ( Molnár et al., 2016c ).

his phenomenon should be modeled with an appropriate damage

odel ( Moös et al., 1999; Molnár and Gravouil, 2017 ) rather than

asic computational plasticity. 

Based on this evolution, we have proposed a generic shape for

he yield surface ( Molnár et al., 2016a ): 

p 
p y, − + 

(
q 
c 

)b − 1 = 0 if p ≤ p int (
p−h 

d 

)2 + 

(
q 
e 

)2 − 1 = 0 if p int < p 
(1)

In this yield surface, the tensile side of the dome is modeled

y an extended Drucker–Prager model. This power law function is

losed by an elliptic cap on the compression side. Under the as-

umption of associated plasticity, densification sets in under pure

ydrostatic compression. This model will be subsequently referred

o as DP-cap. 

For simplicity, we have chosen to work with an associated

ule. Thus Eq. (1) will be considered both as yield function and

ow potential. This is common practice for microscopic yield crite-

ia ( Lambropoulos et al., 1996; Schuh and Lund, 2003; Kermouche

t al., 2008; Keryvin et al., 2014 ). 

The parameters for the DP-cap model are as follows ( Fig. 2 a).

p y, − sets the tensile strength and b the power law exponent of

he extended Drucker–Prager function: for b = 1 we find the stan-

ard linear Drucker–Prager model while curvature increases with

 ( Fig. 3 a). Parameter c sets the cohesion ( Fig. 3 b). The three pa-

ameters of the elliptic cap d, e and h are set by the compressive

trength p y, + and the requirement that the two component func-

ions meet smoothly at some pressure p int ( Fig. 2 a). Details on the

overning equations can be found in our previous work ( Molnár

t al., 2016a ). As a result, the following equations can be used: 

 = 

�p 2 + b · �p ( p y, + − �p − p y, −) 

2�p + b · ( p y, + − �p − p y, −) 
, (2)

 = 

c [ �p + b ( p y, + − �p − p y, −) ] √ 

p y, − · b [ 2�p + b ( p y, + − �p − p y, −) ] 
(

p y, + −�p−p y, −
p y, −

) b−2 
2 b 

, (3)

 = p y, + − d. (4)

Within this framework, two simple additional features are in-

roduced to model the complex evolution shown in Fig. 1 . First the

trength in compression p y, + increases with densification as mea-

ured experimentally. Therefore irreversible volumetric strain ε pl 
V 

is

sed as an internal variable, as is standard in some recent constitu-

ive relations for amorphous silica ( Kermouche et al., 2008; Keryvin

t al., 2014 ). As a result, when density saturates, the cap slides to

nfinity and the yield function evolves smoothly into a standard

MG-like behavior ( Fig. 2 b). Second, we observe that the choice of

ressure p int at which Drucker–Prager and elliptic functions meet
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Fig. 2. DP-cap yield criterion in the p (pressure) - q (equivalent shear stress) space, part (a) shows the parameters of the yield function. Part (b) shows how the hardening 

takes place and the bump disappears with densification. 

Fig. 3. Effect of parameters b and c on the DP-cap yield criterion. 
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as a strong impact on the overall shape of the yield function be-

ause it sets the slope of the ellipse on the tension side. As a re-

ult, if p int is close to the tensile strength p y, −, then the elliptic

ap will be prominent. If p int is far away from p y, −, then the ellip-

ic cap is fully included inside the Drucker–Prager function which

t simply closes off on the compressive side. An interesting feature

s that, although the evolution shown in Fig. 1 is complicated, with

 decreasing bump with increasing density, it can be modeled very

imply within the DP-cap model if we define p int = p y, + 
(
ε pl 

V 

)
− �p

here �p is a constant. Then p int increases with p y, + as density in-

reases and if p int is initially close to p y, −, the initially prominent

ump will decrease to finally blend into the Drucker–Prager func-

ion as densification proceeds ( Fig. 2 b). 

The implementation of pressure and densification coupled

hear models have been extensively studied in literature, thus only

he main issues are addressed here. Let us note that such consti-

utive models have been used for granular materials, such as geo-

ogical materials by Borja and Lee (1990) , pharmaceutical powders

y Wu et al. (2008) and Han et al. (2008) . One essential – and per-

aps misleading feature – of the present work is that it addresses

ressure-dependence of bulk materials, which are not usually con-

idered porous contrary to those mentioned above. However, some

imilarities can be found between the yield properties of granu-

ar and bulk materials. For instance, it has been shown by Nemat-

asser and Okada (2001) that continuous shearing induces irre-

ersible anisotropy and densification ( Nemat-Nasser, 2004 )) in co-

esionless sand, which was surprisingly also observed in silicate

lasses using atomic scale simulations by Molnár et al. (2016a ). 

To implement the DP-Cap yield function in ABAQUS/Standard

 ABAQUS, 2011 ) a user defined material model scheme (UMAT) is

sed. Details concerning the algorithm can be found in Appendix A .

s  
. Experimental calibration 

In practice, to model a given amorphous silicate, p y, −, b, c ,

p y, + 
(
ε pl 

V 

)
and �p must be determined. This quantitative evalua-

ion of the numerical parameters – ie the calibration of the model

can be performed by comparison between numerical trials and

xperimental results. To that end, we need quantitative measure-

ents for as many different types of loadings as possible. How-

ver, as stated before, one of the major constraints is the necessity

o carry out these measurements at the micron-scale. 

This calibration is necessary not only because of the limitations

f the potentials used in the Molecular Statics calculations but also

ecause the calculations are done without thermal activation. The

xperiments are conducted at room temperature, which is well be-

ow the glass transition temperature of silica, so that temperature

s not expected to play a significant role in the shape of the yield

riterion. Therefore, it may be assumed that the form of the yield

unction is unchanged, however the yield strength could actually

e lower due to more active plastic zones. 

.1. Experimental data sets 

An extensive set of possible experiments is shown schematically

n Fig. 4 along with an indication of the average loading path in the

p − q plane. Among these tests, we find the well known diamond

nvil cell (DAC - hydrostatic compression - 6) and indentation (4)

xperiments, along with more recently developed tests such as pil-

ar (5) and sphere (3) compression. Also shown is uniaxial traction

1), a test of considerably greater difficulty ( Luo et al., 2016 ), and

ure shear (2) which has not been attempted (or at least achieved)

o far. Due to experimental difficulties, a reasonably consistent se-



4 G. Molnár et al. / Mechanics of Materials 114 (2017) 1–8 

Fig. 4. DP-Cap yield criterion in the space of pressure and equivalent shear stress. 

Different stress paths and domains are shown: 1) uniaxial tension; 2) pure shear; 3) 

sphere compression; 4) indentation; 5) uniaxial compression; 6) hydrostatic com- 

pression. 

Table 1 

Elastic material properties used in the finite element models. 

Material Young’s modulus [GPa] Poisson’s ratio [-] 

Silica 72 0.18 

Diamond (indenter) 10 0 0 0.07 

Silicon (substrate) 130 0.22 

Table 2 

Material parameters identified and used in present work. 

Yield properties 

b c �p p y, − p y, + 

5 5.7 GPa 7 GPa -5 GPa according to Eq. (5) 

Initial (undensified) cap parameters 

d e h 

4.42 GPa 5.09 GPa −1 . 42 GPa 

Positive yield pressure ( p y, + ) 
p 0 p m k m ε pl,max 

V 

3 GPa 20 GPa 3 4 -0.196 
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ries of results are available only for amorphous silica, which is why

we have attempted calibration of the DP-cap model for silica glass

only. 

3.2. Calibration procedure 

The compressive strength of silica under pure hydrostatic pres-

sure and especially its evolution with density p y, + 
(
ε pl 

V 

)
(exp. (6)

in Fig. 4 ) has been extensively studied by anvil methods, either
DAC or multi-anvil devices. To take this abundant data into account
we use the approximate analytical dependence proposed earlier by
Keryvin et al. (2014) : 

p y, + 
(
ε pl 

V 

)
= 

{ [ 
− ln 

(
1 − ε pl 

V 

ε pl, max 
V 

)
1 
k 

] 1 /m 

· ( p m 

− p 0 ) + p 0 if ε pl 
V 

> ε pl, max
V 

∞ otherwise , 

(5)

where p 0 is the initial yield pressure and p m 

, k and m are mate-

rial parameters (see Table 2 ). We chose this function to describe

the hydrostatic hardening of silica, because it fits well with atom-

istic simulations, where almost no pure elastic domain was found

( Molnár et al., 2016a ). Different experiments put the elastic limit

( p ) of silica to different pressure values depending on their preci-
0 
ion. For example densification is found around 7–8 GPa ( Rouxel

t al., 2010 ) indentation, and 9 GPa ( Vandembroucq et al., 2008 )

or diamond anvil cells. Therefore to create a smooth transition

etween elastic and hardening domains we chose the most up

o date function proposed recently by Keryvin et al. (2014) . How-

ver, it needs to be strengthened that this sigmoidal function with

p 0 = 3 GPa is only an approximation. This slight shortcoming is of

o consequence for the kind of mechanical tests we are interested

n here, but may lead to significant error for detailed mechanical

tudies near the threshold. In this case a more accurate descrip-

ion of the threshold is in order. The determination of p y, − is a

it more difficult to carry out since in this regime there is almost

o data available at all. We therefore assume a reasonable value

f −5 GPa. This choice turns out to be consistent with the (very

cattered) data available ( Luo et al., 2016 - exp. (1) in Fig. 4 ). 

The evaluation of �p is more tricky and we will comment more

xtensively on the impact of this parameter in the discussion. Since

e know that a purely elliptic model reasonably fits indentation

nd pillar experiments ( Kermouche et al., 2008 ), we do not expect

 strong bump contribution. Therefore, we assume an intermediate

alue for �p (7 GPa) which puts the model in the monotonically

ncreasing strength regime ( Fig. 2 a). 

Finally, we are left with the determination of b and c . Exami-

ation of Figs. 2 and 4 suggests that sphere compression (exp. (3))

nd indentation (exp. (4)) can be used for that purpose: these two

ypes of experiments lie in a somewhat different area of the load-

ng space where b and c both affect the response directly. As a

esult, we can expect a differentiation of these two parameters. 

The elastic material properties for all models are taken accord-

ng to Table 1 . The finite element geometries for each test is sum-

arized in Fig. 5 . Indentation tests were computed using fully in-

egrated 3D solid elements. To save computational time the half

f the actual test is modeled. Therefore, as shown in Fig. 5 a, the

 -displacement is constrained on the middle plane. The remain-

ng sides and the bottom of the sample were constrained com-

letely. The load was applied on the top of the indenter using

 displacement controlled method. For each indenter tip α and

 are fixed ( g = 50 0 0 nm and α = 65 . 3 ◦ for Berkovich), and the

est of the geometry is calculated according to: f = tan ( α) · g/ 
√ 

3

nd j = tan ( α) · 3 g. The average finite element size of 200 nm was

aken around the indenter tip. 

To model sphere compression 2D axis-symmetric elements

ere used. The rotational symmetry is defined around axis y , as

hown in Fig. 5 b. The bottom of the silicon substrate is constrained

n both x and y directions, while the load is applied on the top

f the diamond indenter. An average of 50 nm finite element mesh

ize is used on the contact surface and 300 nm elsewhere. 

Furthermore, to verify the calibrated parameters, micro-pillars

ere tested. Similarly to the sphere compression, axis-symmetric

lements were used. The rotational symmetry was defined on axis

 . The bottom and the right side of the substrate was constrained,

hile the load was applied on the top of the indenter. The pillar

as meshed with an element size of 200 nm. 

For all contacts a 0.1 friction coefficient was used with a Penalty

ormulation. We have calculated the flat punch compression of a

phere to emulate available data ( Romeis et al., 2015 ). Based on

he experimental results, we plot the maximum reaction force for

 0.927 micron punch penetration on a 4.17 micron silica sphere

n Fig. 6 b. We find that the calculated maximum reaction force is

lmost insensitive to the Drucker–Prager exponent b . This finding

s in agreement with the quasi pure shear type of loading expe-

ienced in sphere compression. In contrast, the calculated max-

mum reaction force for a 2 micron deep Berkovich indentation

 Fig. 6 a) displays a clear dependence upon Drucker–Prager expo-

ent b as well as cohesion c because the stress state involves more

ydrostatic component. Based on the experimental values of reac-
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Fig. 5. a) 3D finite element geometry and mesh for indentation tests. α shows the angle of the indenter tip. b) Axis symmetric finite element geometry for nanosphere 

compression. c) Axis symmetric finite element geometry for micropillar compression tests. 

Fig. 6. a) Maximum reaction force ( P max ) for Berkovich indentation at h max = 20 0 0 nm as a function of parameter c for different b values. Blue dashed line shows the 

experimental value ( 515 mN Field et al., 2003; Iwashita and Swain, 2002 ). b) Maximum reaction force ( P max ) for nanosphere compression at h max = 927 nm as a function of 

parameter c for different b values. Blue dashed line shows the experimental value ( 34.36 mN Romeis et al., 2015 ). c) Combination of parameter b and c which reproduces the 

experimental values correctly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Reaction force as a function of displacement ( h ). Solid black line shows the results of present work, red dashed line the results calculated using the yield criterion of 

Kermouche et al. (2008) and symbols represent the experimental measurements: a) Berkovich test ( Field et al., 2003; Iwashita and Swain, 2002 ); b) Nanosphere compression 

( Romeis et al., 2015 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ion force, an optimum set of ( b, c ) parameters can be established

 Fig. 6 c and Table 2 ). 

The full loading-unloading curves calculated for the final values

f the model parameters are shown in Fig. 7 for Berkovich inden-

ation (a) and sphere compression (b). Good agreement is found

ith the experiments, further demonstrating that the form of the

ield function is reasonable and the parameter values adequate. 

. Discussion 

To assess the predictive power of the calibrated DP-cap model,

e have performed additional calculations for other loading con-
gurations. Results for indentation with sharper tips are shown in

ig. 8 a and compared with experimental results ( Field et al., 2003 ).

ood agreement is found although the loading curve is slightly un-

erestimated in our calculations. We also considered pillar com-

ression. The results are shown in Fig. 8 b along with the data

rom Kermouche et al. (2016) . A similarly good agreement is found

lthough the predictions again slightly underestimate the loading

urve. 

We observe that the results of the DP-cap model do not dif-

er significantly from the results of the standard elliptic model by

ermouche et al. (2008) . When dealing with mainly compressive
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Fig. 8. a) Reaction force as a function of indentation depth for α = 45 ◦ (red circles), cube corner (green triangle) tests ( Field et al., 2003 ). Black solid line shows the results 

of the simulation. b) Reaction force as a function of displacement for micropillar compression tests. Symbols show the experimental values ( Kermouche et al., 2016 ) and solid 

line the simulated ones. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Stress state distribution for three types of loading at maximum penetration. (a) Berkovich indentation (b) microsphere compression (c) pillar compression. The figure 

also shows the yield criteria in the initial state and at full densification. 
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loadings, such as the presently available data, the models turn out

very similar in effect. For silica we observe only a small pressure

dependence ( b = 5 ) in the DP-Cap model, while this can be much

larger for other compositions. This is fully consistent with the

atomistic simulations ( Molnár et al., 2016a ). In the DP-cap model,

the cohesion c = 5 . 7 GPa ( ie the strength at zero pressure) is some-

what lower than in the elliptic model (6.5 GPa). In the DP-cap

model, the derivative of the strength with pressure is positive at

zero pressure, in contrast to the elliptic model where this deriva-

tive is zero. To maintain the same average response, the cohesion

is therefore lower in the DP-cap model. 

Along the same line of thought, we note that in the atomic

scale simulations of pure silica ( Mantisi et al., 2016 ), a significant

bump contributes to the low hydrostatic pressure region, quite

similar to Fig. 1 . However we were able to model silica response

with a large value of the �p parameter, i.e. with no bump. One

reason for this discrepancy could be that strain hardening rapidly

induces a reduction of the bump. More likely, the reason is that

the sole datum of reaction force vs. displacement for different ex-

perimental configurations cannot discriminate between all combi-

nations of parameter values. 

A maybe more differentiating way to analyze the calculation re-

sults is to plot the spatial distribution of the stress state in the

p − q plane for a given experimental configuration. As an exam-

ple, three different configurations are shown in Fig. 9 . For indenta-

tion, a marked high pressure tail clearly appears in the stress state

distribution, which is absent in pillar compression ( Lacroix et al.,

2012 ). This tail is due to confinement by the surrounding elastic

medium which strongly limits radial plastic flow, resulting in hy-
rostatic pressure build-up and finally densification. Indeed care

ust be taken that tests which occupy roughly the same region

n the stress state diagram ( Fig. 4 ) may still differ markedly be-

ause of the spread in the stress states. In this respect it is inter-

sting to note that sphere compression is somewhat intermediate

etween pillar compression and indentation, with some extension

f the stress state into the high pressure regime. This result is not

bvious from the bare inspection of Fig. 4 . In fact, the sphere geom-

try restores some of the confinement which was lost in the pillar.

rom these considerations, it appears that sphere compression may

e a truly fruitful pursuit in the present field. 

These results suggest that beyond force displacement data,

hich are the result of spatial integration over a stress state dis-

ribution, full field measurements should be developed for refined

efinition of constitutive relations in silicate glasses. Residual strain

aps are an example of this strategy ( Perriot et al., 2006 ). For this

eason, we have investigated the impact of parameter �p on den-

ity distribution in Berkovich indentation. All other model param-

ters have been kept constant. Fig. 10 shows: a) the load displace-

ent curves for the various values of �p tested; b) the density

long the vertical axis ( z ) in the symmetry plane under the inden-

er. We find that increasing �p enhances densification. This was

o be expected since densification proceeds only when the elliptic

ap is reached in the yield criterion, and since for large �p , the

ap is active in a larger range of pressure. This verifies our original

ssumption of �p = 7 GPa, showing a maximum of ε pl 
V 

= 15 . 4 %,

hich compares favorably with previous experiments ( Perriot et al.,

006 ). It is remarkable, however, that this variation is obtained

ithout measurable impact on the load displacement curve. 
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Fig. 10. a) Reaction force for Berkovich indentation for different �p values. b) Plastic volumetric strain ( ε pl 
V 

) after unloading under the indenter tip in the silica specimen for 

different �p values. 
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Fig. A.11. Implicit non-radial return algorithm. 
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. Conclusion 

Based on our previous atomic scale modeling of the plastic de-

ormation of various silicate glasses, we have shown how a quan-

itative constitutive relation can be built by calibration of the an-

lytical form to experimental results. Additional loading configu-

ations have been calculated to test the reliability of the model.

his generic form for constitutive relations of amorphous silicates

s fully consistent with more specific phenomenological constitu-

ive models proposed recently to model amorphous silica. It also

rovides relevant criteria for a larger variety of silicate glasses,

ith a well established physical basis. We have also shown that we

an identify the constitutive parameters using a small set of mi-

romechanical experiments which have been developed recently.

lthough the full set of data is only available for silica presently,

t can relatively easily be extended to other silicate glasses in a

ear-future. Due to the increasing complexity of the constitutive

odels, we have also emphasized that the simpler datum of load

isplacement curves under various relevant loadings must be com-

lemented by richer data sets such as strain distribution mea-

urements. Our work also points out that experiments in the ten-

ile regime, which are very difficult, would be most valuable at

resent, and that even in the case of silicate glasses ( i.e. with mod-

fiers) the paucity of micromechanics experiments strongly limits

he accuracy of the possible descriptions. Finally, several interest-

ng issues have not been considered here. For example, a detailed

nalysis of the flow rule as derived from the MD results would be

 challenging increment to the present method. In a different di-

ection, softening and the formation of shear bands would deserve

pecific developments as well. 
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ppendix A. Implementation details 

We divide the criterion into three parts: the extended Drucker–

rager part ( p y, − < p < p int ), the left side of the ellipse ( p int < p < h ,

here h is the center of the ellipse) and the right side of the el-

ipse ( h < p < p y, + ). In the first two parts the slope is positive, thus

he plastic volume change is positive as well, whereas, if the slope

s negative, the material densifies ( ε pl 
V 

< 0 , where ε pl 
V 

can be cal-

ulated by taking the trace of the plastic Hencky strain tensor).

ccording to atomistic simulations ( Molnár et al., 2016a ) positive
lastic volume change does not affect the positive yield pressure,

herefore when the stress path reaches the left side (either the

rucker–Prager curve or the left side of the ellipse) the equivalent

lastic strain ( ε pl 
V 

), controlling the hardening, remains unchanged.

s a result the implementation and the return algorithm can be

eparated into a left (perfectly plastic) and right (hardening) part.

n the left ( p < h ) side a radial return algorithm is used both for

he Drucker–Prager and the ellipse. On the other hand, the increas-

ng positive yield pressure complicates the implementation even

ith an associated flow rule since the ellipse changes in a non-

adial way. Therefore, to follow the changing gradient of the yield

unction, a Newton–Raphson iteration is applied to satisfy the fol-

owing conditions: 

 = �σ − C �ε + C �λ∇F 
(
σ A + �σ

)
= 0 , (A.1)

 = F 
(
σ A + �σ

)
= 0 . (A.2)

Eq. (A.1) stands for the stress condition, namely

hat the vectorial sum of the predicted increment

 uline > < uline > C < / uline > < / uline > �< uline > ɛ < / uline > 

nd return ( C �λ∇F ( σ A + �σ ) ) must be equal to the final stress

ncrement (see Fig. A.11 ). Unfortunately, if the gradient of the yield

urface ( ∇F ) is different in point A and point B, this equation

annot be solved directly. Thus the yield criterion also needs to be

atisfied ( Eq. (A.2) ). 

The equation system is solved iteratively by minimizing grad-

ally the residues ( s, r ). The Jacobian of the system is updated in

http://dx.doi.org/10.13039/501100001665
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each j internal iteration step: [
I + �λC ∇ 

2 F C ∇F 

∇ F T ∂F / ∂λ

]
j 

[
δσ j+1 

δλ j+1 

]
= 

[
−s j 
−r j 

]
, (A.3)

where < uline > < uline > C < / uline > < / uline > is the elastic stiff-

ness tensor, ∇F and ∇ 

2 F are the first and second gradients of

the yield surface with respect to the stress tensor at the internal

step j (calculated from the actual stress state σ j = σ A + �σ j ). The

stress ( �< uline >σ < / uline > ) and the plastic multiplier ( �λ) in-

crements are updated in each j iterations as follows: 

�σ j+1 = �σ j + δσ j+1 

�λ j+1 = �λ j + δλ j+1 
. (A.4)

The aim of the above iteration is to minimize the stress residue

( < uline > s < / uline > ) and the value of the yield function ( r ).

Therefore, after each internal step their value is updated as well. To

solve the linear equation system an LU decomposition is used The

plastic strain increment is defined using an associated flow rule:

d ε pl = dλ∇F . Finally, when the residues are eliminated, all quanti-

ties are updated to calculate the tangent stiffness according to the

following equation: 

 

tan = C −
C ∇ F ∇ F T C 

∇ F T C ∇F − ∂F / ∂λ
. (A.5)

Further information about the algorithm can be found in several

textbooks discussing computational plasticity ( Krabbenhøft, 2002;

Nemat-Nasser, 2004; Oñate and Owen, 2007; de Souza-Neto et al.,

2008 ). 
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