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Silicate glasses are macroscopically brittle but ductile at the micron scale. This plastic response is
complex: in open structure materials, such as amorphous silica, plastic yield results in significant
densification. While, more compact structures (e.g. soda-silicate glasses) are known to suppress densi-
fication and promote shear flow. We have carried out atomic scale simulations to analyze the plastic
response of a series of silicates with increasing sodium content. Quasi-static, multi-axial deformation
tests were performed on large samples (z103 nm3). Their yield behavior was quantified at different
stress states, by measuring permanent volume changes. Qualitative agreement was found between the
response of modeled systems and experimental results. Strong coupling between plastic yield and
densification was observed. Our results also suggest that sodium silicates may densify not only under
hydrostatic compression but also upon shear at large strains. Based on these numerical results, we
propose a general yield criterion for soda-silicate glasses in which density is an internal variable. As
density increases, the elliptic yield surface (characterizing amorphous silicates with open structures)
gradually evolves into a Drucker-Prager-like model for fully densified samples.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Silicate glasses are used for many technical purposes, especially
where stiffness and transparency are required. Silicate glasses are
brittle on the macroscopic scale but ductile at the micron scale [1].
This plastic response is expected to be key to understand brittle-
ness. However, it was soon found that there is an unusual feature in
the plastic response of amorphous silicates. Open structure glasses
exhibit irreversible volumetric strain upon compression: for
amorphous silica this densification saturates at ca. 20% at a hy-
drostatic pressure of about 20 GPa [2e5]. Moreover, for technical
silicate glasses, sodium oxide (Na2O) is usually added to silica, along
with other compounds. Indeed, sodiummodifies the silica network
and lowers the glass transition temperature for easier glass
n�ar).

lsevier Ltd. All rights reserved.
processing. But the addition of sodium also impacts mechanical
ductility. Upon hydrostatic compression soda-lime-silicates show
less densification [6], and at reduced pressures values [7]. This
behavior results from the phenomena that sodium gradually fills up
the open structures.

In fact, the relation between densification and plastic yield in
silicate glasses is a complex question, and a continuing matter of
debate. Ever since densification was observed, the respective
contribution of irreversible volumetric strain and shear flow has
been an issue [8,9]. Experimentally, because larger samples break,
nano-indentation was a useful tool. Unfortunately the resulting
strain field of an indentation is very inhomogeneous, which helps
little in the identification of a complex constitutive behavior. Ac-
cording to a rule of thumb, if pile-up is present e especially with
very sharp indenters [10] e there is significant shear plasticity [11].
While if densification is dominant, the refractive index of the glass
changes [12]. A large number of experiments was carried out, and
the overall picture emerged: if densification is prevented, shear
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1 The cutoff values used for the potential function were fine-tuned in order to
achieve the experimentally measured densities (2.238, 2.340 and 2.470 g/cm3) at
ambient pressure. Therefore, we used a parameter rcut equal to 5.1, 5.9, 6.9 Å for
NSx5, NSx15 and NSx30 samples respectively.
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flow is enhanced. It was shown, that the addition of sodium [13,14]
and pre-densification [15,16] decreases volumetric plasticity and
increases shear flow.

However, for a more quantitative assessment of the competing
processes, it is necessary to develop a continuum scale description of
the governing plastic yield. Given the complexity of tests such as
indentation, the use of advanced numerical tools and especially
finite elementmodeling is inevitable. Compared to the large number
of papers reporting indentation results, constitutive models for
plastic yield in silicate glasses are few and far [17e20]. Moreover,
these models must be calibrated using experimental results.

During indentation test force displacement curves are the usual
indicators, however they are not very sensitive. To strengthen the
experimental basis, a more elaborate identification of plasticity
have been considered such as the measurement of residual stress
(from crack patterns [21] or birefringence [22]) or density fields
after indentation (from Raman scattering [23], luminescence [24]
or chemical etching [25]). However, for a precise description
other tests must be devised. The “simplest” one is probably the
uniaxial compression test [26,27].

Once due consideration is given to these difficulties, it appears
that numerical experiments may offer insight into the mechanical
response of such complex materials. In this paper, our aim is to
develop yield criteria from atomistic simulations for amorphous
silicates, specifically considering the impact of composition. Given
the present state of development of molecular dynamics, we do not
expect these calculations to provide a quantitative characterization.
Rather, we hope that our simulation results provide an explicit
functional description of yield surface. Which model can then be
made quantitative for given actual glass compositions, based on the
various micron-scale mechanical experiments mentioned above,
such as diamond anvil [28], pillar compression [26] or indentation
tests [15].

In a pioneering work, Schuh and Lund [29] derived a constitu-
tive relation from atomistic simulations for metallic glasses. Their
numerically calculated yield surface compared favorably with
experimental results. Since then, many works have been dedicated
to measure plasticity in metallic glasses [29e33], nano-crystalline
metals [34,35] and glassy polymers [36,37]. Amorphous solids in
general were studied [38e40], though an elaborate quantitative
description of silicate glasses is still missing. Simulations are very
useful in this context, not only because they can provide detailed
information about the mechanical response, but also because the
underlying rearrangement mechanisms can be examined at the
atom scale.

The paper is structured as follows. Section 2 introduces the
numerical methods with details on molecular dynamics and statics
[41]. In Section 3 results are given, first for simple hydrostatic
compression and shear, then for the combined of the two. This is
necessary to identify the constitutive behavior with strong
coupling between volumetric and shear deformations. We show
that the yield process can be rationalized when the evolution of
density is considered. Finally in Section 4, a new form of yield
function is proposed with the density as an internal variable.

2. Methods

Our aim is to simulate the mechanical response of amorphous
silicate materials with open structures with increasing
depolymerization.

2.1. Atomic sample preparation

The glass samples were generated by the random sequential
placement of the atoms in a cubic simulation box with periodic
boundary conditions. Molecular simulations were performed with
LAMMPS [42] to equilibrate the liquid at 3000 K, to cool it using
1013 K/s quenching rate until ~0 K, and finally deform the samples.
Atomic interactions weremodeled with the empirical BKS potential
[43] using the parameters of Yuan and Cormack [44]. The potential
function was defined for the different pair interactions (e.g. SieO,
OeO or NaeO) with respect to the strong ionic/covalent SieO
bonds and the weaker but longer NaeO ones.1

To avoid the collapse of the atoms the short term potential was
substituted with a repulsive function [45]. In this manner we have
simulated three glasses xNa2 O-(100-x)SiO2 with x ¼ 5, 15, and 30%
mol which will be referred to as NSx5, NSx15 and NSx30 following
Yuan and Cormack [44]. The system sizes were 67 041, 69 849 and
73 368 atoms respectively with a final simulation box length of
10 nm. Thanks to this relatively large box, finite size effects are
minimized. All samples were then compared with neutron [46],
Brillouin [47] scattering and NMR [48e50] experiments to validate
the initial structure. Agreement was found within the precision of
the experimental results as shown also by Yuan and Cormack [44].
Further information about the sample generation can be found in
Ref. [51].
2.2. Deformation scheme

To display a pressure dependent yield surface themain variables
are pressure (p) and equivalent shear stress (k). Where p ¼ �sm,
and the average normal stress sm is calculated from the
components of the diagonal of the Cauchy stress tensor (s):
sm ¼ (s1þs2þs3)/3, si are the principal normal stresses.

Similarly, equivalent shear stress k can be expressed as: k¼ J2,
where J2 is the second invariant of deviatoric stress tensor s
(s ¼ s�smI, I is the identity matrix). J2 can be given by the com-
ponents of the Cauchy stress tensor (s) as well:

J2 ¼ 1
6

�
ðs1 � s2Þ2 þ ðs1 � s3Þ2 þ ðs2 � s3Þ2

�
: (1)

In addition, we have also studied the impact of the third stress
invariant J3¼ det(s). Therefore, we will also use the Haigh-
Westergaard (HW) stress space [52e58], where the three inde-
pendent variables are:

� hydrostatic stress r ¼ �p
ffiffiffi
3

p
,

� deviatoric stress s ¼ k
ffiffiffi
2

p
¼

ffiffiffiffiffiffiffi
2J2

p
,

� meridian angle (or Lode angle) - w.

The meridian angle (w) is defined as [59]:

cos3w ¼ 3
ffiffiffi
3

p

2
J3
J3=22

: (2)

Note the opposite sign convention for pressure and hydrostatic
stress: in compression pressure is positive while hydrostatic stress
is negative. The third variable (w) in the HW stress space indicates
whether the deviatoric stress tensor is predominantly tensile
(w ¼ 0�), shear (w ¼ 30�) or compressive (w ¼ 60�).

The deformation was applied in a quasi-static way [41]. During
both compression and tension the dimensions of the simulation box
was reduced by a constant displacement step, while the positions of
the particles were rescaled in a homogeneous way. After box



Table 1
Parameter ri for different loading cases in Eq. (4) [59,61].

Meridian section w r1 r2 r3

Tensile 0� 2=
ffiffiffi
3

p
�1=

ffiffiffi
3

p
�1=

ffiffiffi
3

p

Pure shear 30� 1 0 �1
Compression 60� 1=

ffiffiffi
3

p
1=

ffiffiffi
3

p
�2=

ffiffiffi
3

p
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deformation, a new equilibrium position was searched using the
PolakeRibiere conjugate gradient algorithm. The macroscopic
stress tensor of the systemwas calculated according to Ref. [60]:

s ¼ �1
V

X
i

2
4�mivi5vi þ

1
2

X
isj

rij5f ij

3
5; (3)

where i and j are the atomic indices. The summation is over all the
particles contained by the total volume (V). The first term in the
bracket is the kinetic energy contribution which is considered zero
because samples are in static equilibrium. The variables vi and mi

are the velocity vector and the mass of atom i. The second term is
the stress originating from the pairwise energy. This value can be
calculated for each atom by summing the tensorial product of rij
(rij¼ rj�ri, where ri and rj are the position vectors of atom i and j)
and the interatomic force vector (fij) applied on atom i by atom j.

To evaluate the constitutive relations, permanent plastic strains
were calculated as a function of maximum stress state in various
loading/unloading cycles. In practice, the yield stress is often
written as a function of the plastic strains. Here, by the inverse
process, we register plastic strains as a function of applied stresses
to determine the hardening functions.

The following protocol was executed to calculate the permanent
volume variations (εplV ) at a given stress state (P) after loading and
unloading. In Fig. 1 the schema of the applied deformation is
shown. In a first step, the simulation box (r¼0 GPa) was deformed
hydrostatically (s1 ¼ s2¼ s3) to obtain the desired pressure value.
Then the sides of the box were elongated or compressed separately
to apply deviatoric stress at constant pressure and constant me-
ridian angle (step 2) to reach the target load point (P). During step 3
the direction of the deformationwas reversed to reduce the applied
deviatoric stress to zero, maintaining the principal stress relations
as in step 2. Finally in step 4 the pressure was relaxed to zero. The
final box shape was compared to the original one to calculate the
permanent volumetric strain (εplV ðr; sÞ) as a function of applied
stresses. The experiment was carried out for various stress states
(r¼ [�25,25] GPa, s¼ [0,12] GPa) tomap the plastic response of the
material accurately. Fig. 1 also displays a schema of the expected
mechanical response: the red curve shows the quasi elastic domain
with only small permanent strain, then the material should yield
Fig. 1. To calculate permanent volumetric strains at different stress states, the samples
were first deformed hydrostatically (step 1), then pure deviatoric stress was applied
following Eq. (4) (step 2) and finally deviatoric stress (step 3) and pressure (step 4)
were relaxed to zero. The final shape of the simulation box was compared to the
original one to compute permanent volumetric strain ε

pl
V as a function of applied

stresses r,s. The figure also shows both initial (quasi-elastic region) and final (fully
densified) yield strength. The thin lines show the evolution of the yield surface during
gradual densification upon hydrostatic and shear deformation.
and after a gradual hardening the maximum load bearing capacity
should be reached.

These tests were carried out for all three compositions not only
on the pristine (undensified) samples but also after pre-
densification as well. The samples were pre-densified by pure hy-
drostatic compression (step 1), then the pressure was relaxation
(step 4) to zero.

To ensure that deformation proceeds at a constant meridian
angle, we followed a loading paths obeying:

s2 ¼ ðs1 þ pÞr2=r1 � p;
s3 ¼ ðs1 þ pÞr3=r1 � p; (4)

where r1, r2 and r3 are ratios given in Table 1. The term in the
brackets is the stress difference applied by the deviatoric defor-
mation compared to the original pressure state. For example if
w ¼ 30�: the difference in the first principal stress is positive, while
the difference in the third is negative and s2 remains unchanged.

If thematerial is elastic, a similar relationship for principal strains
hold aswell. However, whenplasticity arises, the axial strains have to
be modified separately. Fig. 2 shows the evolution of both principal
stresses and strains with increasing number of deformation steps. A
constant strain increment dε1¼10�4 (axial displacement du1 ¼ Ldε1)
was used. Initially the other two axial strain increments were set as
shown inTable 1 through du2,3¼ du1r2,3/r1. If the stresses were found
to deviate from Eq. (4) more than 0.005 GPa, the displacements were
corrected in the next step. For example if the second principal stress
at step n (sn2) was larger than requested, the displacement dunþ1

2 was
Fig. 2. Principal stresses and principal strains as a function of load step for deforma-
tion in the pure shear meridian (w ¼ 30�). A constant strain increment dε1¼10�4 was
used and the other two principal strain steps (dε2 and dε3) were iteratively adjusted to
match the desired relations between principal stresses (Eq. (4)).



Table 2
Parameters of Eq. (7) and (10) for different compositions. R2 is the coefficient of
determination of the fit.

Composition ε
pl;max
V [-] pc [GPa] m [-] R2

NSx5 �0.31 14.61 3.37 0.9984
NSx15 �0.29 12.01 2.37 0.9989
NSx30 �0.21 12.97 2.12 0.9994
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reduced in the next step according to the feedback equation
dunþ1

2 ¼ du1ðr2=r1 þ ðs2 � sn2ÞB), where s2 is the target value ac-
cording to Eq. (4) and B is a convergence parameter set to 30 1/GPa.

Using this procedure we found that negligible rotation was
induced (txy ¼ txz ¼ tyz < 0.005 GPa) so that the axial stresses were
directly equal to the principal stresses. As a result, to calculate the
permanent volumetric strain, the normal strain components were
calculated directly from the logarithm of the individual Hencky
stretch ratios (li):

εi ¼ lnðliÞ ¼ ln
�
1þ ε

SS
i

�
: (5)

In Eq. (5) εi are the finite and ε
SS
i are (small) engineering normal

strains (i¼ x,y,z). The volumetric strain (εV) can be calculated as the
sum of the individual axial strain components:

εV ¼
X

i¼x;y;z

εi ¼
X

i¼x;y;z

ln
�
1þ ε

SS
i

�
¼ ln

�
1þ dV

V0

�
; (6)

where, dV is the volume change and V0 is the original volume size.
Fig. 2 shows how the principal strains had to be set in order to

achieve the desired relationship between principal stresses for a w

¼ 30� and r ¼ 0 GPa (p¼ 0 GPa) deformation case. Using this
iteration process wewere able to conduct deviatoric (shear) tests at
constant hydrostatic stress (r) and constant meridian angle (w).

3. Results

The results are divided into three sections. First we investigate
pure hydrostatic compression and the resulting permanent volu-
metric strain as a function of pressure. Then we focus on the
connection between deviatoric deformation and densification.
Finally, the two basic deformation schemes (hydrostatic, deviatoric)
are combined to map permanent volumetric deformation as a
function of stresses to develop a yield surfaces. The dependence of
these yield surfaces upon initial structures (composition or pre-
densification) is highlighted. Finally we show how these results
can lead to a parametrization as a function of the key internal
variable: the density.

3.1. Hydrostatic deformation

Simple hydrostatic loading experiments were carried out
without shear. Fig. 3 shows the permanent volumetric strain as a
Fig. 3. Permanent volumetric strain (εplV ) as a function of applied hydrostatic pressure
for different compositions. The results are fitted using a sigmoidal fit (see Eq. (7)). The
parameters of the fit can be found in Table 2.
function of maximum hydrostatic pressure. The permanent volume
variations were calculated by compressing the samples isotropi-
cally until the desired pressure value was reached, then the
deformation was reversed in order to relax the pressure. The dif-
ference between the initial and the relaxed volume was compared
to compute ε

pl
V .

The response can be divided into three separate stages. In a first
stage, at low pressure, the response is quasi-elastic and the volume
change is relatively small. In a second stage, densification is roughly
linear with pressure although the details are affected by Na content.
More Na tends to reduce the densification threshold: NSx5 begins
to densify at p¼ 3 GPawhile NSx30 has almost no elastic resistance
and plasticity starts at a very early stage (p¼ 0.5 GPa). In a third
stage, the linear regime gradually bends over and saturates to a
maximum value (εpl;max

V ). The maximum permanent volumetric
strain decreases with Na content.

More precisely the results can be adequately fitted using the
following sigmoidal curve:

ε
pl
V ¼ ε

pl;max
V

�
1� 1

1þ ðp=pcÞm
�

(7)

where pc and m are material constants: pc is the center of the
sigmoidal function close to the inflection point, where the incre-
ment of densification is the largest. Coefficient m is the hardening
exponent. The largerm, the larger the plastic strain increment near
pc. The material parameters εpl;max

V ; pc;m are shown in Table 2.
Qualitatively, the evolution of the plastic properties with

increasing Na content (reduction of the yield threshold and of the
permanent volumetric strain at saturation) is in agreement with
experimental results. Note however that the permanent volumetric
strain at saturation is significantly larger than expected. The
maximum volume loss for NSx30 is found at 16%. However, ex-
periments measured a much lower value for window glass around
6% [6,7]. This discrepancy is probably an artifact of the potential.
Nevertheless, as usual with atomistic simulations our aim is not to
predict material properties quantitatively, but to observe the
atomistic mechanisms and the nature of the mechanical response.
Then, the exact values of the response parameters should be
determined using real life experiments.
3.2. Elementary shear deformation

In Fig. 4 the deviatoric stress and the permanent volumetric
strain of NSx5 are shown as a function of applied deviatoric strain2

(εs) at constant hydrostatic tension p¼�2 GPa. For this small
negative pressure, pristine NSx5 is elastic up to εs¼ 0.15 where it
begins to densify gradually. After reaching its shear strength (peak
stress) a softening stage appears, with densification. In this regime
the plastic volumetric strain increases linearly with applied
deviatoric strain. For large shear, a plastic plateau is observed,
defining the flow stress. Under these conditions, densification even
2 The deviatoric strain was calculated from the Hencky strain tensor in a manner
similar to deviatoric stress.



Fig. 4. Top: deviatoric stress (k) as a function of applied deviatoric strain (εs) under
constant hydrostatic tension p¼�2 GPa for NSx5. The results are shown for three
levels of pre-densification defined by the initial permanent volumetric strain (εpl;iniV ).
Bottom: permanent volumetric strain ε

pl
V . The results demonstrate that shear at con-

stant pressure induces densification at large shear deformations.
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exceeds the maximum value reached with pure hydrostatic pres-
sure. A possible reason for the saturation upon hydrostatic
compression is that silica forms a stable load bearing network with
6 coordinated silicons at high pressure, whereas shear flow breaks
this strong structures and allows the material to densify further
[62]. Some samples were also partially densified using hydrostatic
pressure before the same type of shear experiment was carried out
at p¼�2 GPa (Fig. 4). We find that with pre-densification the
material exhibits reduced strength, earlier plasticity and tends to
expand at the initial deformation stage. Then we find a gradual
transition, until the samples saturates at the same increased den-
sity ε

pl;max
V and the same flow stress on the plastic plateau. Thus, at

large strains shear erases the structural modifications induced by
pre-densification.

The softening phenomena shown in Fig. 4 is generally explained
by the localization of internal plasticity (or so-called shear trans-
formation zones) [39]. These localized regions form shear bands
which allow the material to lose elastic energy in an increased way,
thus reducing the shear strength of the material. Our tests con-
necting densification and softening is not a contradictory hypoth-
esis, but a result which shows, that in silicates this shear band
causes not only softening but permanent volume loss as well. The
detailed analysis of the localization of internal plasticity exceeds
the topic of this paper and does not affects the final results con-
cerning the macroscopic yield properties.

3.3. Determination of yield criteria

The central aim of this study is to define a yield surface for so-
dium silicate-like materials as a function of composition. In the
previous sections we found a strong correlation between densifi-
cation and yield strength. Therefore, to investigate the pressure and
densification dependence of the yield strength several tests were
carried out under combined hydrostatic and deviatoric loading (the
method is explained in Section 2).
Fig. 5 shows permanent volumetric strain as a function of
maximum stress state in the pure shear meridian (w¼30�) for each
of the three compositions. The squares show the maximum stress
that can be reached during deviatoric deformation due to the
plastic plateau or even softening (see Fig. 4). It can be noticed that
both shear strength and hydrostatic tensile strength are reduced by
the addition of sodium. The elastic domain is reduced, which sug-
gests that sodium weakens the sample and facilitates early plasti-
fication. More importantly, for low Na content, a minimum in the
deviatoric strength is found in the early stage: for NSx5 the local
minimum is at r¼�10 GPa (p¼ 5.77 GPa), for NSx15 is at
r¼�3 GPa (p¼ 1.73 GPa). After this local minimum, the deviatoric
strength increases again with pressure, similar to a Drucker-Prager
model [63]. Interestingly NSx30 does not show any sign of a local
minimum and the deviatoric strength increases monotonically
with increasing pressure. Hence, for high sodium content, an
extended Drucker-Prager model [64] is suitable to account for the
yield strength evolution.

The previous representation suffers from several drawbacks.
The permanent volumetric strain can be shown only up to the
maximum stress value. For a softening material, such as shown in
Fig. 4, the softening stage cannot be accounted for. More signifi-
cantly, with the local minimum, shear strength curve is concave,
which appears to violate Drucker's postulate [65] and leads to
instability. These observations suggest that the material actually
evolves during plastic deformation and that parametrization by
some internal variable is necessary. From Fig. 4 it is clear that
densification lowers the deviatoric strength. To clarify the situation,
we have first pre-densified samples using hydrostatic pressure,
then performed the same density mapping procedure through
combined pressure-shear loading. In Fig. 6 themaximumdeviatoric
stress is shown as a function of relative densification g ¼ ε

pl
V =ε

pl;max
V

where ε
pl
V is the permanent volumetric strain and ε

pl;max
V is the

maximum value reachable using hydrostatic compression. In the
same figure, isodensification curves taken from Fig. 5 illustrate the
transformation of the initial yield surface into the final one: as
permanent volumetric strain increases, the positive yield pressure
increases, the deviatoric yield strength decreases and the yield
curve becomes flatter. Most importantly, Fig. 6 shows that once the
dependence upon density has been explicitly taken into account,
the yield surfaces for each given density are convex so that
Drucker's postulate is indeed satisfied [65].

The evolution of the yield surfaces does not only depend upon
pre-densification but also upon composition. With increasing so-
dium content the difference between initial and final deviatoric
yield strength reduces: for NSx5 yield strength is strongly affected
by densification while for NSx30 densification has almost no effect
onmaximum strength. However, in all cases the final yield strength
increases linearly at high pressure, but curves down to zero as a
power law near the tensile threshold.

We also found that the third stress invariant (meridian angle)
affects deviatoric strength. In Fig. 7 the yield strength is shown at
pressure p¼ 0 GPa (in the p�plane) for the three different com-
positions. For pristine samples (g z 0 %, in red) the plots are not
circular, which denotes an impact of meridian angle on shear
strength. The shear strength is lower under compression domi-
nated shear (w¼ 60�) than under tension dominated shear (w¼ 0�).
For fully densified samples (g ¼ 100 %), The strength curves at
p¼ 0 GPa are shown in black. Upon densification, for NSx5, the
deviatoric strength remains almost unchanged. This is an accident
connected to this specific pressure value p¼ 0 GPa, as can be seen in
Fig. 6. With more sodium, pre-densification not only reduces
deviatoric strength but also suppresses anisotropy of the yield
surface in the p-plane. Generally speaking, we find that yield stress
in shear is lower for a compression dominated stress state (w¼ 60�)



Fig. 5. Residual volumetric strain as a function of applied pressure (or hydrostatic stress) and deviatoric stress for three different compositions (see Section 2). The open symbols
shown the maximum yield strength reached. In the region in red permanent volume increase for NSx30 was found. Other compositions initially did not show any permanent plastic
extension. The quasi-elastic regime is found in region in white. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Interpolated curves using the results presented in Fig. 5. All yield surfaces are shown as a function of relative densification (g ¼ ε
pl
V =ε

pl;max
V ) at w¼30� (pure shear meridian).

The dotted lines show intermediate stages of volumetric densification. The solid lines with different symbols represent initially densified samples (see Fig. 4).

Fig. 7. Maximum yield surface shown in the p-plane (p¼ 0 GPa) as a function of densification for different compositions. Red curve shows the yield strength for pristine samples (g
¼ 0 %). Black curve shows the yield strength for fully densified samples (g ¼ 100 %). Each symbol shows a simulated case. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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and higher for a tension dominated stress state (w ¼ 0�). This
response can tentatively be related to the impact of compression
which is known to lower yield stress in open structure materials.
Indeed, for fully densified samples, the yield stress becomes inde-
pendent of meridian angle, as in the Drucker-Prager scheme. This
observation is consistent with the idea that the response of these
materials generally transforms from a compression to a deviatoric
stress sensitive yield criteria as the material densifies.
4. Constitutive model

Using microscopic experiments, such as micro-pillar compres-
sion and indentation, Kermouche et al. [19] showed that silica can
be modeled appropriately using an elliptic yield surface (i.e. a
prolate spheroidal surface in HW space). Permanent densification
gradually transforms this initial yield function into a pressure
insensitive von Mises criterion [66] (i.e. a cylinder in HW space).



Table 3
Material constants for the DP-cap model as a function of composition and relative
permanent volumetric strain. The curves were fitted to the results presented in
Fig. 6.

Composition NSx5 NSx15 NSx30

g [%] 0 100 0 100 0 100
ry,þ [GPa] 22.79 16.94 15.31 13.16 2.51 6.00
ry,� [GPa] Shown by Eq. (10) and Table 2
rint [GPa] 20.0þry,� 15.0þry,� 6.5þry,�

a [GPa] 13.0 20.0 24.0
b [-] 1.5 4.4 1.5 3.7 1.5 3.4
c [GPa] 14.0 7.0 20.0 7.0 24.0 6.4
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Molecular dynamics simulation on silica-like materials have
confirmed the overall curvature of the yield surface [67].

Our present atomistic results confirm this hypothesis. They also
suggest a more appropriate model for amorphous silicates. Our
simulations show that the yield function transforms gradually from
an initial elliptic to a Drucker-Prager-like shape as densification
increases. As a result we can propose a density dependent yield
function to capture this evolution as a function of permanent
volumetric strain (Fig. 8a).

The yield function (referred as DP-cap in the following) is
compiled from two parts: an extended Drucker-Prager-like model
and an elliptic cap. The tension side, from ry,þ to rint is described
with the extended Drucker-Prager function [64]:

FPD ¼
�

s
cðgÞ

�bðgÞ
þ r� ry;þðgÞ

aðgÞ : (8)

In Eq. (8) 1/a is similar to the slope found in the original Drucker-
Prager model [63], b and c are empirical material constants and ry,þ

is the hydrostatic tensile strength. All material constants are linear
functions of relative permanent volume change (g ¼ ε

pl
V =ε

pl;max
V ,

where ε
pl
V is the volumetric plastic strain).

The elliptic cap is defined for the compression side between rint

and ry,� as follows:

FEll ¼
�
r� h
d

�2

þ
�s
e

�2
� 1; (9)

where d, e are the radii and h is the center of the ellipse on the
hydrostatic axis. The cap is always fitted in connection to the power
function by the following three criteria: 1) the values of both
functions (8) and (9) have to be equal at rint; 2) the connection
needs to be smooth, therefore the derivatives of s respect to r for
both functions have to be continuous at P(rint,sint) and finally
ry,�¼ h�d, where ry,� is the compressive yield pressure calculated
as the inverse of Equation (7):

ry;� ¼ �
ffiffiffi
3

p
pc

�
g

1� g

�1=m

: (10)

Of course, although the results of the numerical simulations
were best fitted with function (10), this equation can be replaced
with any other sigmoidal curve used in the literature [6,20] if it fits
experimental results better. From the three independent criteria,
the three parameters of the ellipse can be calculated. Computa-
tional details concerning the relationship between the elliptic cap
and the power function can be found in A.
Fig. 8. a) Schematic illustration of the proposed yield function which combines extended D
connecting point is shown by rint and sint. The positive and the negative yield point on the hy
initial, undensified state (g ¼ 0 %; model: solid line; numerical results: squares) and final, fu
lines show the gradual transformation between the two. (For interpretation of the reference
The DP-cap yield function changes only with relative densifi-
cation, which can result both from hydrostatic and deviatoric
loading. It handles hydrostatic hardening as well as shear softening
at constant pressure (Fig. 4).

Fig. 8b shows the DP-capmodel fitted on the results obtained for
NSx5. All material constants are summarized in Table 3.

The advantage of the DP-cap yield function is that it is capable of
modeling not only one directional but cyclic loading as well, using
density as an internal variable. As to the tensile side of the ellipse,
for samples with small sodium content, negative volume variation
can be applied in a very restricted way only. The sample loses its
load bearing capacity very early and then a macroscopic crack ap-
pears, from which point tensile side of the strength curve was
defined. Of course it is doubtful that this model can describe
rupture adequately. Therefore, to give a physical meaning to pa-
rameters (b and c) which effect the tensile side of the power law is
difficult. To provide a better brittle response to the model, a
different method (e.g. phase-field method, XFEM or a hybrid
discrete and finite element method) should be used in parallel to
this yield criterion. Note also that, to a lesser extent, the samples are
affected by irreversible shear strain and the meridian angle as well.
Therefore, both deviatoric strain hardening and the Lode parameter
should be taken into account for a better representation of the
atomistic results.

5. Conclusion and remarks on future work

Molecular statics simulations were performed to investigate the
mechanical response of silicate glasses with increasing network
depolymerization. Multiaxial loading conditions were used, where
the samples were first deformed hydrostatically, then sheared.
After relaxing the pressure and shear stress to zero, permanent
volumetric strains were computed from initial and final volumes.
The results show that densification not only affects hydrostatic
rucker-Prager model (see Eq. (8) e in black) and elliptic cap (see Eq. (9) e in red). The
drostatic stress axis are shown by ry,þ and ry,� b) Fitted yield functions for NSx5 for the
lly densified state (g ¼ 100 %; model: dashed line; numerical results: triangles). Dotted
s to colour in this figure legend, the reader is referred to the web version of this article.)
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hardening, but also has significant impact on shear yield strength as
well. Sizable loss of free volume is also registered for large ampli-
tude shear deformations. Under these conditions, densification can
be interpreted as amicrostructural change caused by the collapse of
large rings upon shear [62].

We find that shear strength is larger for more polymerized
samples (i.e. with low sodium content). Larger amounts of sodium
facilitate early plastification, with less softening and more ductility.
This result is consistent with the observation that sodium rich sil-
icates undergo more shear flow and less densification. Low sodium
content samples enter a softening regime controlled by volumetric
strain while sodium rich silicates can reach their shear strength at
zero pressure without densification. However, a similar transition
can also be achieved in low sodium samples by pre-densification:
from an elliptic model, the response transforms into a Drucker-
Prager behavior when density increases, confirming the tendency
observed in experiments [15].

Based on our numerical results, we have proposed a density
dependent yield function. Considering the complex hardening of
the material, density is introduced as an internal variable taking
into account the permanent volume changes for both hydrostatic
and shear deformation. The yield function is initially elliptic and
gradually evolves into a Drucker-Prager criterion when densifica-
tion saturates.

In principle, using numerical experiments to derive constitutive
equations, as presented in this paper, has two advantages: 1) it is
easier and much more cost efficient to conduct experiments
virtually; 2) for silicate glasses, it is difficult/impossible to conduct
multiaxial tests experimentally. For instance, yield stress as a
function of meridian angle can certainly not be measured in the
present state of experimental development. Therefore, simulations
should be a powerful tool to derive shapes of yield functions and
identify essential material parameters. However, the technique is of
course still very limited by the problem of definition and calibration
of the interaction potentials. For example, in our results, although
the potential provides accurate static structures, the density at
saturation after deformation certainly overestimates expected
experimental values. This is why, at present, conclusions can be
derived only in a qualitative way. To actually implement such a
constitutive model, it is necessary to determine material constants
by comparing the simulated data with a variety of experimental
results, under as many different loading conditions as possible.
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Appendix A. Cap fitting

To fit the three parameters of the elliptic cap to the power
function, three independent criteria is used:

� The deviatoric stress values of both elliptic and power function
have to be equal at the intersection point (rint): sEll¼ sPD.

� The connection needs to be smooth, therefore the derivatives of
s respect to r for both functions again have to be the same at
P(rint,sint).

� Finally ry,�¼ h�d, where ry,� is the compressive yield pressure
calculated as the inverse of Equation (7).

To satisfy the fist criteria the deviatoric stress value (sint) at rint

can be calculated from Equation (8). Then both rint and sint has to be
substituted into Equation (9):
 
rint � h

d

!2

þ
 
sint

e

!2

¼ 1; (A.1)

where rint and sint are known and e, d and h are the unknowns.
The derivative of the power function (8) at the intersection point

can be expressed as:

dsPD
dr

¼ � c
ab

 
ry;þ � rint

a

!1=b�1

: (A.2)

Using implicit differentiation the same slope can be expressed
for the elliptic cap as well:

dsEll
dr

¼ �e2

d2
rint � h
sint

: (A.3)

Knowing that (A.2) and (A.3) has to be equal, the second
equation can be expressed. Using the third condition (ry,�¼ h�d),
the three parameters of the ellipse (e, d and h) can be calculated
from three independent equations.
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