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A B S T R A C T

We propose a length-free (LF) implementation of phase field (PF) approach to fracture. The input parameters
of the LF-PF model are the same as those of the coupled criterion (CC), namely the critical energy release
rate c and the material tensile strength 𝜎c. This formulation relies on the previously determined correlation
between the internal length in classical PF fracture models and the material tensile strength. Similar failure
loads are obtained using either AT1 and AT2 versions of the LF-PF, a larger diffused damaged zone being
observed using AT1. The LF-PF formulation allows retrieving the size effect for a crack under remote tensile
stress in infinite medium and shows square hole specimen failure stresses close to the predictions obtained
using the CC, which allows using both models in a complementary manner. Finally, the proposed formulation
overcomes the problem of identifying different internal lengths for different specimen configurations.
1. Introduction

Crack propagation has been studied for many years in the fracture
mechanics framework proposed by Griffith [1,2]. However, two main
limitations of this approach can be highlighted. First, it is based on the
assumption of an existing crack and enables studying its propagation
but fails to predict its nucleation. Second, its implementation in a finite
element (FE) code to study crack propagation either requires a priori the
knowledge of the crack path or robust remeshing methods to update the
crack configuration at each propagation step [3,4]. The first limitation
was overcome by Leguillon [5] who developed the coupled criterion
in the finite fracture mechanics (FFM) framework [6,7], dedicated to
study the nucleation of a crack. This approach proved to be a robust
and efficient way to predict crack initiation in many configurations
such as, e.g., weak or strong singularities, non-singular stress raisers
[8,9]. Initially developed under small deformation assumption and
linear elastic 2D framework, it has since then been extended to 3D [10–
14], to consider material or geometry nonlinearities [15–19], as well
as dynamic crack initiation [20,21]. It also revealed efficient for small
scale fracture assessment [22–24]. The second limitation of Griffith’s
approach was solved by first reconsidering the local energy criterion as
a global minimization problem [25], which was the first step towards
a variational formulation of fracture problems. Indeed, this approach
suffered from not knowing the crack path described as a surface in
the volume. The introduction of a crack density function inspired from
[26,27] combined with an internal length scale made it possible to ob-
tain a variational formulation and thus its FE implementation [28,29].
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Phase-field (PF) fracture approach has become a common method to
assess fracture problems and has been improved to consider plasticity
[30,31], dynamic effects [32,33], fatigue [34,35], interfacial damages
[36], hydrogen assisted cracking [37], hydraulic fractures [38–40] or
phase transformation-induced fracture [41,42].

The main idea of PF approach consists in approximating the sharp
crack discontinuity by a smeared damage field description through the
use of an internal length (𝓁c). This length controls the magnitude of
the damage diffusion. Initially, 𝓁c was used to facilitate the numerical
solution and avoid mesh dependence of the crack path, with the idea
of reducing 𝓁c to 0 to retrieve the original Griffith theory, thus simply
considering 𝓁c as a numerical parameter without physical meaning.
Some authors considered this parameter as a material internal length
that must be identified [43–47], for instance based on the failure
loading measured experimentally [48–50]. Some authors also tried
to directly measure the PF internal length based on microtomograph
[48,51] or fractography [52] observations of the damage region extent.

The CC and PF approaches may somehow be related since they
can be used in order to model the same fracture problems. Both
approaches were for instance used for Hertzian indentation induced
fracture [53,54], notched thin ply laminates fracture [55] or notched
specimens under bending [56]. Based on the main idea proposed by
Leguillon [5], i.e., considering not only the material critical energy
release rate but also its strength, Kumar et al. [50] recently proposed to
revisit nucleation in the PF approach. Both the CC and PF approaches
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167-8442/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.tafmec.2022.103728
Received 15 September 2022; Received in revised form 10 November 2022; Accept
ed 12 December 2022

https://www.elsevier.com/locate/tafmec
http://www.elsevier.com/locate/tafmec
mailto:aurelien.doitrand@insa-lyon.fr
https://doi.org/10.1016/j.tafmec.2022.103728
https://doi.org/10.1016/j.tafmec.2022.103728
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tafmec.2022.103728&domain=pdf


Theoretical and Applied Fracture Mechanics 124 (2023) 103728A. Doitrand et al.
Fig. 1. Variation of the normalized tensile strength 𝜂 as a function of the principal stress ratio 𝜎𝐼𝐼∕𝜎𝐼 obtained for (a) AT1 and (b) AT2 implementation of the classical PF
approach.
T
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involve the material critical energy release rate, therefore, the main
difference in the input parameters of both methods is the tensile
strength in the CC, replaced by the internal length in PF approach. An
analytical relation between the internal length and the material tensile
strength can actually be derived based on the PF homogeneous solution
under uniaxial loading, thus neglecting the damage gradient [32,46,48–
50,57–63]. This relation can actually be extended to any multiaxial
loadings, which results in a surface describing the correlation between
𝜎c and 𝓁c, depending on the local principal stress ratio and the Poisson’s
ratio [64]. The correlation between 𝜎c and 𝓁c was further investigated
by confronting the CC and PF approaches to mode I crack propagation,
shear fracture and crack arrest configuration [64]. Interestingly, it was
shown that similarly to the CC, the PF actually followed the principle
of fulfilling both stress and energy criteria. Both approaches provided
similar quantitative and qualitative results, which enabled deriving a
unique correlation between the internal length, the tensile strength and
the initiation length.

It was thus highlighted that for a given geometry and loading
configuration, it is possible to identify 𝓁c that corresponds to a given
value of 𝜎c (and vice-versa). Nevertheless, Abaza et al. [56] recently
observed that two significantly different internal lengths had to be
identified to capture the initiation loading level predicted by the CC for
two different ceramic specimens containing either a V-notch (identified
𝓁c = 0.02mm) or a crack blunted by a hole (identified 𝓁c = 0.007mm).
Therefore, it is not straightforward to determine a unique internal
length for a given material and it raised the question of which inter-
nal length should be chosen if the configuration under investigation
contains both a V-notch and a crack blunted by a hole. The objective
of this work is to overcome this problem and propose a PF formulation
in which the input parameters are the critical energy release rate c
and the tensile strength 𝜎c based on the previously derived correlation
between 𝓁c and 𝜎c, which is recalled in Section 2. The PF formulation
is then presented in Section 3 and illustrated on different examples in
Section 4.

2. Correlation for the homogeneous solution

We first recall the CC and PF approaches which enabled deriving a
correlation between the PF internal length 𝓁c and the material tensile
strength 𝜎𝑐 .

2.1. The coupled criterion

The main idea of the CC relies on two necessary conditions that
must be simultaneously fulfilled in order to make the nucleation of
2

a crack possible. The first condition invokes a sufficiently high stress
just before initiation over the whole area on which a crack initiates. It
thus consists in comparing the tensile stress along the crack path before
initiation to the material tensile strength. The second condition results
from a balance of the energies between and after crack initiation, which
results in comparing the incremental energy release rate (defined as
the opposite of the variation of potential energy divided by the finite
initiation crack increment) to the material critical energy release rate.
Solving the CC reverts to determining the minimum imposed loading
for which both conditions are fulfilled, which also allows determining
the initiation crack length. The input parameters of the CC are the
elastic properties of the material, the critical energy release rate c and
the material tensile strength 𝜎c. The outputs of the model are the critical
loading at crack initiation and the initiation crack length. More details
about the CC and its implementation can be found in [5,9,64].

2.2. Correlation between PF and CC

The PF approach shares some similar input parameters with the
CC, namely the elastic properties of the material and the critical en-
ergy release rate c. However, the material tensile strength does not
intervene in the classical PF formulation, it is replaced by an internal
length 𝓁c. More details about the PF formulation and its FE implemen-
tation can for instance be found in [64,65] as well as in Section 3.
Similarly to the CC, the PF approach also enables determining the
critical loading at crack initiation as well as crack geometry [64], which
was the starting point to find a correlation between 𝜎c and 𝓁c. Based
on the homogeneous solution and different benchmark examples, we
previously showed [64] that the correlation between 𝜎c and 𝓁c depends
on the Poisson’s ratio 𝜈 and principal stress ratio:

𝜎c = 𝜂(𝜈,
𝜎𝐼𝐼
𝜎𝐼

)

√

𝐸c
𝓁c

, (1)

where 𝜂 can somehow be understood as a normalized tensile strength
which varies depending on the local stress state and on the Poisson’s
ratio. This relation equivalently writes:

𝓁c = 𝜂(𝜈,
𝜎𝐼𝐼
𝜎𝐼

)2
𝐸c
𝜎2c

= 𝜂(𝜈,
𝜎𝐼𝐼
𝜎𝐼

)2𝓁mat . (2)

he methodology to compute 𝜂 and its numerical implementation are
rovided in [64]. As a matter of example, the particular values of 𝜂
nder uniaxial tension (𝜎𝐼𝐼∕𝜎𝐼 = 0) for AT1 and AT2 implementations
re respectively 𝜂𝐴𝑇 1(𝜈, 0) =

√

3
8(1−𝜈2) and 𝜂𝐴𝑇 2(𝜈, 0) =

√

27
256(1−𝜈2) .

Fig. 1 shows the variation of the normalized tensile strength 𝜂 as a
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Fig. 2. Homogeneous solution failure surface in the space of principal stresses obtained
for 𝐸 = 3GPa, 𝑐 = 300 J∕m2, 𝜈 = 0 or 𝜈 = 0.3, using either AT1 implementation
(𝓁𝑐 = 0.2mm) or the proposed strength-based PF formulation (𝜎𝑐 = 41MPa for 𝜈 = 0
and 𝜎𝑐 = 46MPa for 𝜈 = 0.3).

function of 𝜎𝐼𝐼∕𝜎𝐼 for several values of 𝜈 obtained using the AT1 or AT2
implementation of the PF approach. For a given stress state and tensile
strength, AT1 implementation results in a larger regularization length
than for AT2. This correlation is of main interest when implementing
a PF approach for a material whose tensile strength is known, or
equivalently determine the tensile strength in a configuration for which
𝓁c is known. For configurations in which only one crack nucleates and
propagates under a non-evolutive loading, it enables making a clear
link between the CC and the PF approaches. It also leads to some issues
when considering a structure made of the same material (described by
fracture properties c and 𝜎c), in which several cracks may develop
from different stress raisers or singularities with different local stress
states. From the correlation determined above, it would require the use
of several internal lengths to be adapted at each possible crack nucle-
ation locations. These observations thus motivates the implementation
of a strength-based PF formulation in which the inputs are no longer 𝓁c
and c but 𝜎c and c, the introduction of 𝜎c in the PF formulation being
based on the above-mentioned correlation to 𝓁c. Fig. 2 shows the failure
envelope corresponding to the homogeneous solution obtained using
either AT1 PF implementation (𝓁𝑐 = 0.2 mm) or the strength-based
PF implementation. Under homogeneous stress state, the strength-based
PF implementation actually reverts to a Rankine-like fracture envelope,
which means that for given Poisson’s ratio and local stress state, the
regularization length is adapted so that failure occurs for 𝜎 = 𝜎c.

3. Phase field formulation

The proposed length free phase field for fracture (LF-PF) formula-
tion is expected to be reliable in homogeneous stress configurations,
since it will be constructed based on a 𝜎c − 𝓁c correlation constructed
from the PF homogeneous solution. It is also expected to be reliable in
configurations driven by energy (for instance crack length large com-
pared to the internal length/material characteristic length, [64]) since
in these configurations the failure load and crack configuration will
mainly depend on c. In intermediate configurations, where fracture
is driven both by stress and energy, it should incorporate both aspects
as shown in [64].

3.1. Internal length free formulation

We consider 2D phase field implementation for fracture under quasi-
static conditions and small deformation assumption. The energy func-
tional that must be minimized to determine the displacements (𝒖) and
3

the phase-field (𝑑) writes:

 = 𝛱 int (𝒖, 𝑑) +𝑊 (𝑑) −𝛱ext , (3)

with the internal and external strain energies defined as follows:

𝛱 int (𝒖, 𝑑) = ∫𝛺 𝜓 (𝜀, 𝑑) 𝑑𝛺,
𝛱ext = ∫𝛺 𝜸 ⋅ 𝒖𝑑𝑉 + ∫𝜕𝛺 𝒕 ⋅ 𝒖𝑑𝐴.

(4)

where 𝜸 and 𝒕 are external volumetric and boundary forces. The strain
energy density (𝜓) depends on the phase field variable 𝑑 varying
between 0 (undamaged state) and 1 (crack represented by a total
material stiffness and resistance loss) so that:

𝜓 (𝜺, 𝑑) = 𝑔 (𝑑)𝜓+
0 (𝜺) + 𝜓−

0 (𝜺) . (5)

The elastic strain energy is split into positive (tensile) and negative
(compression) components and only the positive part of the elastic
strain energy is damaged, which ensures avoiding damage due to
compression. Therefore, the material stiffness and the elastic stress are
reduced due to increasing damage variable only when the material
is under tension. The degradation function is defined as: 𝑔 (𝑑) =
(1 − 𝑑)2 + 𝜉, where 𝜉 = 10−12 ensures a good solution conditioning. The
decomposition is based on the principal strains (𝜀𝑖) and on the trace of
the strain tensor:

⎧

⎪

⎨

⎪

⎩

𝜓+
0 (𝜺̂) =

∑

𝑖
𝜇⟨𝜀𝑖⟩

2
+ + 𝜆

2 ⟨𝑡𝑟 (𝜺)⟩
2
+,

𝜓−
0 (𝜺̂) =

∑

𝑖
𝜇⟨𝜀𝑖⟩

2
− + 𝜆

2 ⟨𝑡𝑟 (𝜺)⟩
2
−.

(6)

with 𝜆 and 𝜇 the Lamé parameters.
𝑊 (𝑑) represents the energy dissipated by opening the crack, de-

scribed by a diffuse representation of the localized discontinuity. In
classical implementation of phase-field approach for fracture, it writes:

𝑊 (𝑑) = c𝛤 (𝑑) = ∫𝛺
c𝛾 (𝑑,∇𝑑) 𝑑𝛺 = ∫𝛺

c
𝑐𝜔𝓁c

[

𝜔(𝑑) + 𝓁2
c |∇𝑑|

2] 𝑑𝛺,

(7)

where 𝛤 is the overall crack surface, 𝛾 the crack surface density
and c is the material critical energy release rate. The crack surface
density induces a smeared representation of a sharp crack. It is usually
calculated using the internal length 𝓁c, which controls the extent of the
damaged zone.

We recalled in Section 2 the correlation between the internal length
and the material tensile strength that was derived based on a confronta-
tion between PF and CC. We now exploit this correlation (Eq. (2))
in order to reformulate the crack surface density so that it no longer
depends on an input internal length:

𝛾 (𝑑,∇𝑑) =
𝜎2c

𝑐𝜔𝜂2𝐸c

⎡

⎢

⎢

⎣

𝜔(𝑑) +

(

𝜂2
𝐸c
𝜎2c

)2

|∇𝑑|2
⎤

⎥

⎥

⎦

. (8)

Based on this formulation, the crack surface density only depends
on the material properties (Young’s modulus, Poisson’s ratio, critical
energy release rate and tensile strength) and the local stress state
through 𝜂. As a consequence, the total energy dissipated by the crack
opening writes:

𝑊 (𝑑) = ∫𝛺

𝜎2c
𝑐𝜔𝜂2𝐸

⎡

⎢

⎢

⎣

𝜔(𝑑) +

(

𝜂2
𝐸c
𝜎2c

)2

|∇𝑑|2
⎤

⎥

⎥

⎦

𝑑𝛺, (9)

where 𝜔 (𝑑) is a geometric function that controls the topology of the
phase field distribution and 𝑐𝜔 is a normalization constant so that the
total crack surface density function is consistent with the theoretical
value of the corresponding discrete crack representation:

𝑐𝜔 = 4
1
√

𝜔(𝑠)𝑑𝑠. (10)
∫0
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Fig. 3. (a) Infinite media containing a crack of length 2𝑎 subjected to a remote stress 𝜎0 and (b) variation of the critical stress at crack propagation normalized by the material
tensile strength as a function of the initial crack length normalized by the material characteristic length obtained using either the CC, the classical PF or the LF-PF model. The
blue dashed line indicates Griffith’s solution.
Fig. 4. Square hole specimen under tensile loading in which crack initiation occurs at
the square corners.

We consider two models classically used, namely AT1 [46] and AT2
[29,66], which differs in the crack surface density through the defini-
tion of 𝜔 (𝑑):
{

𝜔AT1 (𝑑) = 𝑑,
𝜔AT2 (𝑑) = 𝑑2,

(11)

with the corresponding normalization constants 𝑐AT1𝜔 = 8∕3 and 𝑐AT2𝜔 =
2. Damage irreversibility is ensured so that 𝑑̇ > 0.

3.2. Numerical implementation

Solving the fully coupled problem in a monolithic way results in
convergence issues, which can be avoided by decoupling both prob-
lems and successively solving the uncoupled mechanical (considering
fixed phase field) and phase-field (considering fixed displacements)
problems, respectively:

𝒖𝑛+1 = Arg
{

inf
𝒖 ∫𝛺

[

𝜓
(

𝒖, 𝑑𝑛
)

− 𝜸̄ ⋅ 𝒖
]

𝑑𝑉 − ∫𝜕𝛺
𝒕̄ ⋅ 𝒖𝑑𝐴

}

, (12)

𝑑𝑛+1 = Arg
{

inf
𝑑 ∫𝛺

[

𝑐𝛾 (𝑑,∇𝑑) + (1 − 𝑑)2𝜓+
0 (0, 𝑛)

]

𝑑𝑉
}

, (13)

Damage irreversibility is enforced by using Lagrange multipliers corre-
sponding to the phase field variable increment 𝑓 (𝑑n+1) = 𝑑n − 𝑑n+1 ⩽ 0
and thus modifying the energy functional

 = 𝛱 int (𝒖, 𝑑) +𝑊 (𝑑) −𝛱ext +
∑

𝑗={𝑑n>𝑑n+1}
𝜆𝑗𝑓𝑗 (𝑑) , (14)

where 𝑗 denotes the active constraints and 𝜆𝑗 are the Lagrange multi-
pliers. More details about the implementation of AT1 and AT2 models
can be found in previous papers [64,65,67].

The numerical implementation of LF-PF formulation is actually
based on these previous implementations. The main difference of the
4

proposed implementation is due to the change in input parameters
since the internal length 𝓁c is replaced by the material tensile strength
𝜎c. Therefore, the internal length is no longer fixed but calculated at
each integration point using Eq. (2), which requires the knowledge
of 𝜂. For the sake of simplicity, 𝜂 is computed a priori as a function
of the principal stress ratio 𝜎𝐼𝐼∕𝜎𝐼 and the Poisson’ ratio. Then, at
each iteration, the value of 𝜂 is adapted at each integration points to
calculate the crack surface density function (Eq. (8)) and thus the total
energy dissipated by the crack opening (Eq. (9)). A constant value of 𝜂
is finally set as soon as the phase field at the integration point becomes
larger than 0.99. The proposed LF-PF formulation finally reverts to
using the conventional phase-field scheme in which the regularization
length at each integration point is locally defined based on the 𝜂
function in (Eq. (2)).

4. Examples

4.1. Crack in infinite media under tension

We first evaluate the ability of the LF-PF implementation to repro-
duce the size effect for a crack in infinite media under remote tensile
stress (Fig. 3(a)). We consider isotropic homogeneous material (Young’s
modulus: 𝐸 = 3GPa, Poisson’s ratio 𝜈 = 0.37 and critical energy
release rate c = 300 J∕m2, typical properties of brittle polymers).
The size effect can thus be studied by varying the normalized initial
crack length 𝑎∕𝓁mat , i.e., by modifying either the initial crack length
or the material tensile strength. Fig. 3(b) shows the variation of the
normalized critical stress as a function of the normalized initial crack
length obtained with the LF-PF implementation and compared to the
one obtained either with classical AT2 implementation or with the
CC [64]. The LF-PF implementation is able to capture the transition
between a regime following Griffith’s solution for sufficiently large
normalized initial crack lengths to a regime governed by the material
tensile strength for small normalized initial crack lengths. Indeed, when
the initial crack length becomes small enough compared to the material
characteristic length 𝓁mat , the material behaves like if there was no
defect and the critical stress tends towards the material tensile strength,
hence retrieving the homogeneous solution. Moreover, when the initial
crack length is sufficiently large compared to 𝓁mat , we retrieve the
Griffith’s configuration of a semi-infinite crack in infinite media. In this
configuration, the critical stress is mainly controlled by the material
critical energy release rate. It can be observed that the critical stress
variation starts to deviate from Griffith’s solution when the initial crack

length becomes smaller than 𝓁mat .
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Fig. 5. Principal stress ratio 𝜎𝐼𝐼∕𝜎𝐼 distribution around the square hole corner (a–b) before crack initiation and (c,e) after crack propagation on a certain distance and (d)
corresponding damage distribution (the superimposed black zone in (e) corresponds to an area where damage is larger than 0.8. A 𝑑 = 1 Dirichlet boundary condition is prescribed
on the V-notch tip node in this example.
4.2. Square hole specimens under tension

The second example concerns mixed mode crack initiation at square
hole corner under tensile loading (Fig. 4) [68]. The material un-
der investigation is PMMA, considered as isotropic and homogeneous
(Young’s modulus: 𝐸 = 2.7GPa, Poisson’s ratio 𝜈 = 0.39 and critical
energy release rate c = 92 J∕m2). More details about experiments
and CC implementation can be found in [68]. The mesh size near the
crack initiation location is set to at most 𝑐∕250, where 𝑐 is the hole
side, differences on the crack initiation loading smaller than 1% are
obtained using finer meshes. Fig. 5 shows the principal stress ratio
distribution before crack initiation and after a certain propagation for
𝑐 = 15.34mm square hole side. This quantity is of primary importance
for the LF-PF formulation since it enables calculating the coefficient
𝜂 required for the crack surface density calculation (Eq. (8)). The
principal stress ratio varies between 0 and 0.7 before crack initiation
(Fig. 5a–b) and between 0 and 0.55 after propagation (Fig. 5c–e). As
a consequence, 𝜂 varies between 0.433 and 0.457 before initiation
(respectively 0.458 after crack propagation). It results in variations of
the corresponding internal length calculated based on the homogeneous
solution through Eq. (2) between 25.4 μm and 28.2 μm before crack
initiation (respectively 28.3 μm after crack propagation). Therefore, the
LF-PF formulation can be understood as adapting the internal length lo-
cally depending on the principal stress ratio so that the tensile strength
of the material is homogeneous and equal to 𝜎c.

Fig. 6 shows the phase field distribution after a certain crack prop-
agation and at final failure of the specimens obtained using either
AT1 or AT2 versions of the LF-PF implementation. The final crack
path predicted by both model versions are similar and can almost be
superimposed. However, a noticeable difference concerns the extent
of the damage zone, which is larger for AT1 than for AT2 version.
This can be explained by the fact that both model versions have the
same input parameters, namely c and 𝜎c. Therefore, based on Eq. (1)
and Fig. 1, for a given principal stress ratio, the coefficient 𝜂 is larger
for AT1 than for AT2, which results in a larger corresponding internal
length (Eq. (2)). Damage widening is observed near the specimen free
5

edge due to the interaction between the crack tip and the free edge,
which provides a local stress state corresponding to a larger local 𝜂
value and thus a wider damage zone. The LF-PF formulation is now
compared to the results obtained using the coupled criterion [68].
Fig. 7 shows the failure stress obtained using the CC, AT1 or AT2
versions of the LF-PF formulation. Results are presented for the LF-PF
formulation considering or not a 𝑑 = 1 Dirichlet damage boundary
condition on the node located at the V-notch tip. Both the CC and
LF-PF are able to capture the failure force decrease with increasing
hole size observed experimentally [68]. Moreover, similar failure stress
decreases are obtained using either AT1 or AT2 version of LF-PF. This
property results from the fact that classical AT1 or AT2 versions give
two different correlations between 𝓁c and 𝜎c. The LF-PF formulation
uses the coefficient 𝜂AT1 or 𝜂AT2 derived from these correlations so that
the tensile strength of the material is 𝜎𝑐 for both models. Considering
a Dirichlet boundary condition at the V-notch tip results in a decrease
in the failure stress and results in a slightly better agreement with the
CC, which might not be surprising since Dirichlet boundary conditions
on the initial crack nodes were also used in order to determine the
correlation between 𝜎c and 𝓁c [64].

4.3. Abaza’s benchmark

The last example highlights the interest of using a PF formulation
with the same input parameters to assess failure in specimens made
of the same material and containing either a singularity (V-notch) or
a stress concentration (crack blunted by a hole) (Fig. 8) [56]. Two
ceramic materials are considered, namely 3YSZ (Young’s modulus:
𝐸 = 214GPa, Poisson’s ratio 𝜈 = 0.31, critical energy release rate
c = 110 J∕m2 and tensile strength 𝜎c = 583MPa) and 8YSZ (Young’s
modulus: 𝐸 = 216GPa, Poisson’s ratio 𝜈 = 0.31, critical energy release
rate c = 10.8 J∕m2 and tensile strength 𝜎c = 245MPa). Abaza et al. [56]
highlighted that using a classical PF implementation, two significantly
different internal lengths had to be chosen in order to capture the crack
initiation loading levels for these two configurations, which thus raises
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Fig. 6. Damage distribution around the square hole in the specimen obtained using (left) AT1 or (right) AT2 versions of the LF-PF model. The final crack path obtained with AT2
version is compared to an experimental observation of the specimen after failure [68].
Fig. 7. Failure stress variation as a function of the square hole side obtained using
either the CC, the AT1 or the AT2 version of the LF-PF model considering or not
Dirichlet damage boundary condition on the V-notch tip.

the question of which internal lengths should be chosen if we consid-
ered a specimen containing both a V-notch and a crack blunted by a
hole. A possibility would be to adapt locally the internal length depend-
ing on the local singularity or stress concentration. This is somehow
what is intrinsically done when using the LF-PF model through varying
the coefficient 𝜂 based on the variation of principal stress ratio. The
mesh size near the crack initiation location is set to 𝑎𝑛/400, where 𝑎𝑛 is
the notch depth (Fig. 8), differences on crack initiation loading smaller
than 1% are obtained using finer meshes. The load–displacement curves
corresponding to the studied cases obtained with the LF-PF model
are linear up to failure that corresponds to a sudden force drop to
zero. The apparent stress intensity factor is calculated based on the
maximum force before failure. Figs. 9 and 10 show the apparent stress
intensity factor at crack initiation calculated using either the CC or
the LF-PF models for the configuration with a crack blunted by a hole
(Figs. 9(a) and 10(a)) or with a V-notch (Figs. 9(b) and 10(b)) using
the AT2 version of the LF-PF model, using or not a Dirichlet boundary
condition at the notch tip. There is a good agreement between the
apparent generalized stress intensity factors obtained using the CC and
the LF-PF model, especially when if the Dirichlet damage boundary
condition is used. Contrary to the classical PF implementation, the LF-
PF model enables simulating crack initiation and propagation in two
different configurations using the same input parameters. Moreover,
the relevance of the LF-PF formulation with respect to the CC is
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highlighted on two different materials. The principal stress ratio and
damage distribution obtained before initiation and after a certain crack
propagation are shown in Fig. 11 for 3YZ specimen containing a 𝛽 =
90 deg V-notch angle. Before crack initiation, the principal stress ratio
varies between 0 and 0.76 for the specimen containing the blunted
hole and between 0 and 0.68 for the specimen containing the V-notch.
The corresponding range of values for 𝜂 are between 0.36 and 0.38
(specimen with blunted crack) and between 0.37 and 0.38 (specimen
with V-notch). The corresponding range of internal lengths calculated
based on the homogeneous solution through Eq. (2) is between 1.67mm
and 1.87mm (specimen with blunted crack) and between 1.75mm and
1.87mm (specimen with V-notch). After propagation to a certain crack
length, the principal stress ratio are relatively similar between both
cases and varies between 0 and 0.99. The corresponding range of values
for 𝜂 are between 0.33 and 0.38. The corresponding range of internal
lengths calculated based on the homogeneous solution through Eq. (2)
is between 1.37mm and 1.87mm.

5. Discussion

PF approaches for fracture were originally built in order to retrieve
Griffith’s approach [1,2] when the regularization length tends towards
zero. Using an internal length was thus a convenient way to define
crack surface densities and propose a variational formulation and as-
sociated FE implementation of fracture problems. Griffith’s approach is
dedicated to study the propagation of an existing crack, but actually
fails to predicts its initiation at singular point or stress raiser for
instance, generally because the energy release rate tends towards zero
when the crack length tends towards zero. The CC overcomes this
problem by combining a stress criterion to the energy criterion, which
enables assessing both crack initiation and propagation. Indeed, the CC
reverts to Griffith’s approach when applied to assess crack propagation.
It requires as input parameters c and 𝜎c, the material tensile strength.
We previously showed that there exists a correlation between 𝜎c and
𝓁c [64]. Basically, increasing 𝜎c in the CC reverted to decreasing 𝓁c in
PF, following a relation involving both the material properties and the
local stress state.

Therefore, considering 𝓁c that tends towards zero reverts to consider
𝜎c that tends towards infinity (see Eq. (2)) thus retrieving the discrete
solution of Griffith. From the CC point of view, of course it still
enables dealing with crack propagation in Griffith-like configurations,
i.e., configurations only driven by energy such as a semi-infinite crack
in infinite medium. In such configurations, any finite values of 𝜎c may
be used, and similarly the influence of the internal length magnitude
is negligible. For Griffith-like configurations, the internal length thus
becomes a numerical parameter that is convenient for the numeri-
cal implementation but that does not play a significant role from a
physical point of view. However, considering 𝓁 that tends towards
c
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Fig. 8. Abaza’s benchmark geometries under investigation: (a) three-point bending specimen containing a V-notch and (b) three point bending specimen containing a crack blunted
by a hole.
Fig. 9. Apparent (a) stress intensity factor variation as a function of the hole radius and (b) generalized stress intensity factor variation as a function of the V-notch angle obtained
sing either the CC or the LF-PF model with or without Dirichlet damage boundary condition for 3YSZ ceramic.
Fig. 10. Apparent (a) stress intensity factor variation as a function of the hole radius and (b) generalized stress intensity factor variation as a function of the V-notch angle
obtained using either the CC or the LF-PF model with or without Dirichlet damage boundary condition for 8YSZ ceramic.
zero prevents assessing Griffith-unlike configurations for which a stress
criterion is also needed, such as crack initiation.

Instead of trying to only recover Griffith-like configurations of
crack propagation, PF models are actually able to retrieve both crack
propagation and initiation provided 𝓁c is chosen to obtain the max-
imum stress value of 𝜎c under uniaxial homogeneous tension. As a
onsequence, 𝓁c is not only convenient from a numerical point but
lso has a clear physical meaning from a macroscopic point of view: It
escribes the relation between the material properties (Irwin length and
oisson’s ratio) and the local stress state. This relation motivated the
roposition of the LF-PF model with physically based input parameters
7

n which 𝓁c is locally adapted based on this relation. A conclusion
that naturally arises from this reasoning is that the influence of the
regularization length in PF models will be highlighted only in Griffith-
unlike configurations, such as crack initiation, short initial crack or
several cracks interacting.

A major consequence is that the internal length is not related to
the material microstructure or elastic representative volume element
(RVE) and can even be very large compared to the RVE size. With
the proposed LF-PF approach, 𝓁c does not appear explicitly as an
input parameter. However, a local value at each material point can be
calculated based on Eq. (2), resulting in 𝓁c values and diffused damage
zone that are neither spatially nor temporally constant depending on

the stress state time and space variation.
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Fig. 11. Principal stress ratio 𝜎𝐼𝐼∕𝜎𝐼 distribution around (a,c) the hole and (d,f) the V-notch (a,d) before crack initiation and (c,f) after crack propagation on a certain distance
and (b,e) corresponding damage distribution (the black zone in (c) and (e) corresponds to an area where damage is larger than 0.8.
6. Conclusion

In complement of the material critical energy release rate c, the
LF-PF formulation requires as input the material tensile strength 𝜎c
instead of the internal length classically used in PF models. The LF-PF
model overcomes the problem of identifying different internal lengths
for different testing configurations for the same material, since there
is no need to choose or identify an internal length in this formulation.
The LF-PF implementation resembles the classical PF implementation
except that the internal length is replaced by an expression involving
the material characteristic length and the normalized tensile strength 𝜂
that depends on the Poisson’s ratio and the local principal stress ratio.
The normalized tensile strength is determined based on the homoge-
neous solution to provide a correlation between the internal length
and the material tensile strength. Similar results are obtained using
either the AT1 or AT2 version of the LF-PF. The LF-PF formulation gives
results close to that obtained with the coupled criterion, which means
that it is able to assess crack initiation in a similar way as the coupled
criterion, still conserving the possibility to deal with subsequent crack
propagation. In some sense, the LF-PF can thus be considered as a
phase field implementation of the coupled criterion, both models can
be used in a complementary manner since their input parameters are
the same and that they provide similar results. The proposed approach
could be generalized to the 3D case, the main difference being the
calculation of the correlation between 𝓁c and 𝜎c that must be based
on the 3D homogeneous solution (provided in [65]) instead of the 2D
homogeneous solution.
8
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